設(shè),定義,如果對(duì),不等式

恒成立,則實(shí)數(shù)的取值范圍是           (     )

A.       B.       C.      D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)在區(qū)間D上有定義,且對(duì)任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,則稱函數(shù)f(x)在區(qū)間D上的“凹函數(shù)”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數(shù)”,若是,請(qǐng)給出證明;若不是,請(qǐng)說明理由;
(Ⅱ)對(duì)于(I)中的函數(shù)f(x)有下列性質(zhì):“若x∈[a,b],則存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用這個(gè)性質(zhì)證明x0唯一;
(Ⅲ)設(shè)A、B、C是函數(shù)f(x)=ln(1+ex)-x(x∈R)圖象上三個(gè)不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市高三第三次調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè),總有,

則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).

(1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;

(2)對(duì)任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省五市高三第三次調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù) ”;若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).

(1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;

(2)對(duì)任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省九江市修水一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果函數(shù)f(x)在區(qū)間D上有定義,且對(duì)任意x1,x2∈D,x1≠x2,都有,則稱函數(shù)f(x)在區(qū)間D上的“凹函數(shù)”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數(shù)”,若是,請(qǐng)給出證明;若不是,請(qǐng)說明理由;
(Ⅱ)對(duì)于(I)中的函數(shù)f(x)有下列性質(zhì):“若x∈[a,b],則存在x(a,b)使得=f′(x)”成立.利用這個(gè)性質(zhì)證明x唯一;
(Ⅲ)設(shè)A、B、C是函數(shù)f(x)=ln(1+ex)-x(x∈R)圖象上三個(gè)不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市崇文區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如果函數(shù)f(x)在區(qū)間D上有定義,且對(duì)任意x1,x2∈D,x1≠x2,都有,則稱函數(shù)f(x)在區(qū)間D上的“凹函數(shù)”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數(shù)”,若是,請(qǐng)給出證明;若不是,請(qǐng)說明理由;
(Ⅱ)對(duì)于(I)中的函數(shù)f(x)有下列性質(zhì):“若x∈[a,b],則存在x(a,b)使得=f′(x)”成立.利用這個(gè)性質(zhì)證明x唯一;
(Ⅲ)設(shè)A、B、C是函數(shù)f(x)=ln(1+ex)-x(x∈R)圖象上三個(gè)不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案