如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),|PD|=|MD|.點(diǎn)A(0,)、F1(-1,0).
(1)設(shè)在x軸上存在定點(diǎn)F2,使|MF1|+|MF2|為定值,試求F2的坐標(biāo),并指出定值是多少?
(2)求|MA|+|MF1|的最大值,并求此時(shí)點(diǎn)M的坐標(biāo).

【答案】分析:(1)設(shè)點(diǎn)M的坐標(biāo)是(x,y),P的坐標(biāo)是(xp,yp),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),由條件得:xp=x,且,由此能導(dǎo)出M軌跡是以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓,從而能求出F2的坐標(biāo)和定值.
(2)由(1)知,=2,當(dāng)A,F(xiàn)2,M三點(diǎn)共線,且M在AF2延長(zhǎng)線上時(shí),取等號(hào).由此能求出M點(diǎn)坐標(biāo).
解答:解:(1)設(shè)點(diǎn)M的坐標(biāo)是(x,y),P的坐標(biāo)是(xp,yp),
∵點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),
由條件得:xp=x,且,
∵P在圓x2+y2=2上,∴,
整理,得,c=,
∴M軌跡是以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓,
由橢圓定義知|MF1|+|MF2|=2a=2
(2)由(1)知,=2,
當(dāng)A,F(xiàn)2,M三點(diǎn)共線,且M在AF2延長(zhǎng)線上時(shí),取等號(hào).
直線,聯(lián)立,
其中1<x<,解得,
即所求的M的坐標(biāo)
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法,求定值.具體涉及到橢圓的簡(jiǎn)單性質(zhì),圓的性質(zhì)和應(yīng)用,直線與圓錐曲線的位置關(guān)系.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程
(Ⅱ)求過點(diǎn)(3,0)且斜率
4
5
的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
45
|PD|
(1)求:當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程.
(2)直線l:kx+y-5=0恒與點(diǎn)M的軌跡C有交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),|PD|=
2
|MD|.點(diǎn)A(0,
2
)、F1(-1,0).
(1)設(shè)在x軸上存在定點(diǎn)F2,使|MF1|+|MF2|為定值,試求F2的坐標(biāo),并指出定值是多少?
(2)求|MA|+|MF1|的最大值,并求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),PD⊥x軸,垂足為D,M為線段PD上一點(diǎn),且|PD|=
2
|MD|,點(diǎn)A、F1的坐標(biāo)分別為(0,
2
),(-1,0).
(1)求點(diǎn)M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影.M為線段PD上一點(diǎn),且|MD|=
2
2
|PD|

(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)已知點(diǎn)F1(-1,0),F(xiàn)2(1,0),設(shè)點(diǎn)A(1,m)(m>0)是軌跡C上的一點(diǎn),求∠F1AF2的平分線l所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案