如圖,設(shè)P是圓x2+y2=2上的動點,PD⊥x軸,垂足為D,M為線段PD上一點,且|PD|=
2
|MD|,點A、F1的坐標分別為(0,
2
),(-1,0).
(1)求點M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時點M的坐標.
分析:(1)確定M、P坐標之間的關(guān)系,利用P是圓x2+y2=2上的動點,即可求軌跡;
(2)由(1)知,M的軌跡方程是橢圓,F(xiàn)1是左焦點,設(shè)右焦點為F2,利用|MA|+|MF1|=2
2
+|MA|-|MF2|≤2
2
+|AF2|=2
2
+
3
,即可求得結(jié)論.
解答:解:(1)設(shè)M的坐標為(x,y),P的坐標為(xp,yp
∵PD⊥x軸,垂足為D,M為線段PD上一點,且|PD|=
2
|MD|,
∴xp=x,yp=
2

∵P是圓x2+y2=2上的動點,
∴x2+2y2=2;
(2)由(1)知,M的軌跡方程是橢圓,F(xiàn)1是左焦點,設(shè)右焦點為F2,坐標為(1,0)
∴|MA|+|MF1|=2
2
+|MA|-|MF2|≤2
2
+|AF2|=2
2
+
3

當A,F(xiàn)2,M三點共線,且M在AF2延長線上時,取等號
直線AF2的方程為x+
y
2
=1
,與橢圓方程聯(lián)立,解得x=
4+
6
5
,y=
2
-2
3
5

∴所求最大值為2
2
+
3
,此時M的坐標為(
4+
6
5
,
2
-2
3
5
).
點評:本題考查利用相關(guān)點法求動點的軌跡方程,考查最值問題,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的射影,M為PD上一點,且|MD|=
4
5
|PD|
(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程
(Ⅱ)求過點(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的射影,M為PD上一點,且|MD|=
45
|PD|
(1)求:當P在圓上運動時,求點M的軌跡C的方程.
(2)直線l:kx+y-5=0恒與點M的軌跡C有交點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)P是圓x2+y2=2上的動點,點D是P在x軸上的投影,M為線段PD上一點,|PD|=
2
|MD|.點A(0,
2
)、F1(-1,0).
(1)設(shè)在x軸上存在定點F2,使|MF1|+|MF2|為定值,試求F2的坐標,并指出定值是多少?
(2)求|MA|+|MF1|的最大值,并求此時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名一模)如圖,設(shè)P是圓x2+y2=2上的動點,點D是P在x軸上的投影.M為線段PD上一點,且|MD|=
2
2
|PD|

(1)當點P在圓上運動時,求點M的軌跡C的方程;
(2)已知點F1(-1,0),F(xiàn)2(1,0),設(shè)點A(1,m)(m>0)是軌跡C上的一點,求∠F1AF2的平分線l所在直線的方程.

查看答案和解析>>

同步練習冊答案