在底面為正方形的長方體上任意選擇4個頂點,它們可能是以下幾何形體的4個頂點:
①矩形;②不是矩形的平行四邊形;
③有三個面為直角三角形,有一個面為等腰三角形的四面體;
④每個面都是等腰三角形的四面體;
⑤每個面都是直角三角形的四面體.
其中正確的說法是    .(填上正確答案的序號)
【答案】分析:先畫出圖形,在在底面為正方形的長方體上選擇適當?shù)?個頂點,觀察它們構(gòu)成的幾何形體的特征,從而對五個選項一一進行判斷,對于正確的說法只須找出一個即可.
解答:解:①正確②錯誤,若是平行四邊形,則必為矩形;
③如四面體A1ABD;
④如四面體A1C1BD;
⑤如四面體B1ABD;
則正確的說法是①③④⑤.
故答案為:①③④⑤.
點評:本題主要考查了點、線、面間位置特征的判斷,考查空間想象能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、在邊長為30cm的正方形紙板的四角剪去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底盒子,盒子的底面邊長是
20
cm時,盒子的容積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年吉林省長春市東北師大附中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在邊長為30cm的正方形紙板的四角剪去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底盒子,盒子的底面邊長是    cm時,盒子的容積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省海安縣高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1m的正方形鐵皮的四角切去邊長為x的小正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱,容積為V,并規(guī)定:鐵皮箱的高度x與底面正方形的邊長的比值不超過正常數(shù)c,求V的最大值,并寫出相應(yīng)的x的值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案