【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為:為參數(shù)).

(1)求曲線的直角坐標方程與曲線的普通方程;

(2)將曲線經(jīng)過伸縮變換得到曲線,若分別是曲線和曲線上的動點,求的最小值.

【答案】見解析

【解析】(1)的極坐標方程是,,整理得,的直角坐標方程為.……3

曲線,,故的普通方程為……5分

(2)將曲線經(jīng)過伸縮變換得到曲線的方程,則曲線的參數(shù)方程為為參數(shù)).設(shè),則點到曲線的距離為

.

時,有最小值,所以的最小值為.……10

【命題意圖】本題主要考查極坐標系與參數(shù)方程的相關(guān)知識,涉及極坐標方程與直角坐標方程的互化、參數(shù)方程與普通方程的互化等基礎(chǔ)知識,意在考查轉(zhuǎn)化與化歸能力、基本運算能力,方程思想與數(shù)形結(jié)合思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A,B,C的坐標分別為A(3,0),B(0,3),C(cos α,sin α),α.

(1)||=||,求角α的值;

(2)=-1,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知離心率為的橢圓過點,點分別為橢圓的左、右焦點,過的直線交于兩點,且.

(1)求橢圓的方程;

(2)求證:以 為直徑的圓過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點A(4,1)的圓C與直線x﹣y﹣1=0相切于點B(2,1),則圓C的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+﹣1nan=2n﹣1,則{an}的前60項和為( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】EF、G分別是正方體ABCDA1B1C1D1的棱AB、BC、B1C1的中點,如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號).

以正方體的頂點為頂點的三棱錐的四個面中最多只有三個面是直角三角形;

過點FD1、G的截面是正方形;

P在直線FG上運動時,總有APDE;

Q在直線BC1上運動時,三棱錐AD1QC的體積是定值;

M是正方體的平面A1B1C1D1內(nèi)的到點DC1距離相等的點,則點M的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+(1﹣a)x﹣1>0
(1)當a=2時,求不等式的解集.
(2)當a>﹣1時.求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正四面體ABCD的棱長為2,棱AD與平面α所成的角θ∈[ , ],且頂點A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點E到平面α的距離的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ]

查看答案和解析>>

同步練習冊答案