精英家教網 > 高中數學 > 題目詳情
給出下面類比推理命題,其中類比結論正確的是( 。
A.“若a,b∈R,則a+b=b+a”類推出“若a,b∈C,則a+b=b+a”
B.“若(a-b)2+(b-c)2=0,其中a,b,c∈R,則a=b=c”類推出“若(a-b)2+(b-c)2=0,其中a,b,c∈C,則a=b=c”
C.由“(a•b)c=a(b•c),其中a,b,c∈R”類推出“(
a
b
)
c
=
a
(
b
c
)
D.“若ab=ac,其中a,b,c∈R且a≠0,則b=c”類推出“若
a
b
=
a
c
,且
a
0
,則
b
=
c
選項A,不妨設a=x+yi,b=m+ni,其中x,y,m,n均為實數,可得a+b=(x+m)+(y+n)i,b+a=(m+x)+(n+y)i,顯然有a+b=b+a,故正確;
選項B,可取a=0,b=i,c=1+i,代入可得(a-b)2+(b-c)2=(0-i)2+(i-1-i)2=-1+1=0,顯然不滿足a=b=c,故錯誤;
選項C,由向量的運算可知(
a
b
)
c
為與向量
c
共線的向量,而
a
(
b
c
)
為與向量
a
共線的向量,方向不同,不能得相等,故錯誤;
選項D,可舉當向量
b
,
c
反向,但都與向量
a
垂直,顯然有
a
b
=
a
c
,且
a
0
,但不能推出
b
=
c
,故錯誤.
故選A
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下面類比推理命題(其中Q為有理數集,R為實數集,C為復數集)
①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”;
②“若a,b,c,d∈R,則復數a+bi=c+di?a=c,b=d”,類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
?a=c,b=d
”;
③“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”;
④“若x∈R,則|x|<1?-1<x<1”類比推出“若x∈C,則|z|<1?-1<z<1
其中類比結論正確的個數是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下面類比推理命題(其中Q為有理數集,R為實數集,C為復數集):
①“若a,b∈R,則a-b=0⇒a=b”類比推出“若a,b∈C,則a-b=0⇒a=b”;
②“若a,b,c,d∈R,則復數a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則復數b=d”
③“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,則a-b>0⇒a>b”
其中類比得到的結論正確的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下面類比推理命題:
①“若a•3=b•3,則a=b”類推出“若a•0=b•0,則a=b”;
②“若(a+b)c=ac+bc”類推出“
a+b
c
=
a
c
+
b
c
(c≠0)
”;
③“(ab)n=anbn”類推出“(a+b)n=an+bn”;
④“ax+y=ax•ay(0<a≠1)”類推出“l(fā)oga(x+y)=logax•logay(0<a≠1)”.
其中類比結論正確的個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下面類比推理命題(其中Q為有理數集,R為實數集,C為復數集),其中類比結論正確的是( 。
A、“若a,b∈R,則a2+b2=0⇒a=0且b=0”類比推出“若z1,z2∈C,則z12+z22=0⇒z1=0且z2=0”
B、“若a,b,c,d∈R,則復數a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
⇒a=c,b=d
C、“若a,b∈R,則a-b>0⇒a>b”類比推出“若z1,z2∈C,則z1-z2>0⇒z1>z2
D、“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下面類比推理命題(其中Q為有理數集,R為實數集,C為復數集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“a、,b∈C,則a-b=0⇒a=b”
②“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”
③“若a、b、∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”
其中類比結論正確的個數有( 。

查看答案和解析>>

同步練習冊答案