精英家教網(wǎng)選做題:如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=
2
,BC=
3
,∠CAB=120°
,則∠AOB等于
 
分析:根據(jù)所給的一個(gè)三角形的兩邊和一個(gè)角,根據(jù)正弦定理求出角C,注意這是三角形的一個(gè)銳角,根據(jù)同弧所對(duì)的圓心角等于圓周角的二倍,得到結(jié)果.
解答:解:∵在△ABC中,
AB=
2
,BC=
3
,∠CAB=120°

∴根據(jù)正弦定理知
AB
sinC
=
BC
sin120°

∴sinC=
2
2

∵C是三角形的一個(gè)銳角,
∴C=45°,
∵∠AOB與∠C對(duì)應(yīng)著圓的同一段弧,
∴∠AOB=90°,
故答案為:90°
點(diǎn)評(píng):本題考查正弦定理的應(yīng)用,考查同弧所對(duì)的圓周角等于圓心角的一半,注意做出要用的角的正弦值以后,注意角的范圍,本題是一個(gè)比較簡(jiǎn)單的綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于
16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為
7
10
10
的點(diǎn)的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A:(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,由θ=0,θ=
π
3
,ρcosθ+ρsinθ=1圍成圖形的面積是
3-
3
4
3-
3
4

B:(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于
16π
16π

C:(不等式選講)要使關(guān)于x的不等式|x-1|+|x-1|≤3在實(shí)數(shù)范圍內(nèi)有解,則a的取值范圍是
[-2,4]
[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,兩點(diǎn)A(3,
π
3
)
,B(4,
3
)
間的距離是
13
13

B.(不等式選講選做題)若不等式|x+1|+|x-2|>5的解集為
(-∞,-2)∪(3,+∞)
(-∞,-2)∪(3,+∞)

C.(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

查看答案和解析>>

同步練習(xí)冊(cè)答案