【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學期望.

【答案】(1)0.65;(2)答案見解析.

【解析】試題分析:

(1)由題意可得利潤函數(shù)結(jié)合題意求解不等式有即.則食堂利潤不少于760元的概率是.

(2)由題意可知可能的取值為460,660,860,960.分別求得相應的概率有, , .據(jù)此得出分布列,然后計算數(shù)學期望有.

試題解析:

(1)一斤米粉的售價是元.

時, .

時, .

設(shè)利潤不少于760元為事件,

利潤不少于760元時,即.

解得,即.

由直方圖可知,當時,

.

(2)當時, ;

時,

時,

時, .

所以可能的取值為460,660,860,960.

,

,

,

.

的分布列為

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分

1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面

半徑;

2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在梯形ABCD中,ADBCADDC,BC=2AD,四邊形ABEF是矩形,將矩形ABEF沿AB折起到四邊形ABE1F1的位置,使平面ABE1F1⊥平面ABCDMAF1的中點,如圖2.

(1)求證:BE1DC

(2)求證:DM∥平面BCE1;

(3)判斷直線CDME1的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校從參加安全知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù),成績分記為優(yōu)秀)分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

(1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(2)從頻率分布直方圖中,估計本次考試的平均分;

(3)為參加市里舉辦的安全知識競賽,學校舉辦預選賽.已知在學校安全知識競賽中優(yōu)秀的同學通過預選賽的概率為,現(xiàn)在從學校安全知識競賽中優(yōu)秀的同學中選3人參加預選賽,若隨機變量表示這3人中通過預選賽的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于兩點,點的中點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若橢圓C1 和橢圓C2 的焦點相同且a1>a2.給出如下四個結(jié)論:

①橢圓C1和橢圓C2一定沒有公共點;

;

;

a1a2<b1b2.

其中,所有正確結(jié)論的序號是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),則的最大值

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=a(x-lnx)+,a∈R.

(I)討論f(x)的單調(diào)性;

(II)當a=1時,證明f(x)>f’(x)+對于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , , 在線段,, 平面.

(1)求證:平面平面

(2)當四棱錐的體積最大時,求平面與平面所成二面角的余弦值.

查看答案和解析>>

同步練習冊答案