已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為-1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當x>0時,x2<ex;
(3)證明:對任意給定的正數(shù)c,總存在x0,使得當x∈(x0,+∞)時,恒有x<cex
考點:導數(shù)在最大值、最小值問題中的應用,利用導數(shù)研究函數(shù)的單調(diào)性
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用導數(shù)的幾何意義求得a,再利用導數(shù)法求得函數(shù)的極值;
(2)構(gòu)造函數(shù)g(x)=ex-x2,利用導數(shù)求得函數(shù)的最小值,即可得出結(jié)論;
(3)利用(2)的結(jié)論,令x0=
1
c
,則ex>x2
1
c
x,即x<cex.即得結(jié)論成立.
解答: 解:(1)由f(x)=ex-ax得f′(x)=ex-a.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
當x<ln2時,f′(x)<0,f(x)單調(diào)遞減;
當x>ln2時,f′(x)>0,f(x)單調(diào)遞增;
∴當x=ln2時,f(x)有極小值為f(ln2)=eln2-2ln2=2-ln4.
f(x)無極大值.

(2)令g(x)=ex-x2,則g′(x)=ex-2x,
由(1)得,g′(x)=f(x)≥f(ln2)=eln2-2ln2=2-ln4>0,即g′(x)>0,
∴當x>0時,g(x)>g(0)>0,即x2<ex

(3)對任意給定的正數(shù)c,總存在x0=
1
c
>0.當x∈(x0,+∞)時,
由(2)得ex>x2
1
c
x,即x<cex
∴對任意給定的正數(shù)c,總存在x0,使得當x∈(x0,+∞)時,恒有x<cex
點評:本題主要考查基本初等函數(shù)的導數(shù)、導數(shù)的運算及導數(shù)的應用、全稱量詞、存在量詞等基礎知識,考查運算求解能力、推理論證能力、抽象概括能力,考查函數(shù)與方程思想、有限與無限思想、劃歸與轉(zhuǎn)化思想、分類與整合思想、特殊與一般思想.屬難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出b的值為15,則圖中判斷框內(nèi)①處應填的數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:已知正三棱錐P-ABC,側(cè)棱PA,PB,PC的長為2,且∠APB=30°,E,F(xiàn)分別是側(cè)棱PC,PA上的動點,則△BEF的周長的最小值為( 。
A、8-4
3
B、2
C、2
2
D、1+2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a+b=8,c=7,
CA
CB
=-
15
2

(1)求角C;
(2)若sin(α+C)=
1
3
(0<α<π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(Ⅰ)求證:CD⊥平面ABD;
(Ⅱ)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上.
(Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若二面角D1-EC-D的大小為45°,求點B到平面D1EC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,點A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)證明:AC1⊥A1B;
(Ⅱ)設直線AA1與平面BCC1B1的距離為
3
,求二面角A1-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,回答下列問題:
(Ⅰ)若a=sin
6
,b=lnπ,c=e-
1
2
,則輸出的數(shù)是a,b,c中的哪一個?請簡要說明理由;
(Ⅱ)已知c=2,a,b∈{1,2,3,4},且a≠b,現(xiàn)隨機輸入a,b的值一次,則輸出的a,c的概率分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,P,Q分別是棱AB,A1D1上的點,PQ⊥AC,則PQ與BD1所成角的余弦值得取值范圍是
 

查看答案和解析>>

同步練習冊答案