【題目】已知函數(shù),若對任意,總存在,使,則實數(shù)a的取值范圍是( 。
A.或B.C.D.
【答案】A
【解析】
求出兩個函數(shù)的值域,結(jié)合對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),等價為f(x)的值域是g(x)值域的子集,進(jìn)行轉(zhuǎn)化求解即可.
對任意x∈[1,+∞),則f(x)=2x﹣1≥20=1,即函數(shù)f(x1)的值域為[1,+∞),
若對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),
設(shè)函數(shù)g(x)的值域為A,
則滿足[1,+∞)A,即可,
當(dāng)x<0時,函數(shù)g(x)=x2+2a為減函數(shù),則此時g(x)>2a,
當(dāng)x≥0時,g(x)=acosx+3∈[3﹣|a|,3+|a|],
①當(dāng)2a<1時,即a時,滿足條件[1,+∞)A,
②當(dāng)a時,此時2a≥1,要使[1,+∞)A成立,
則此時當(dāng)x≥0時,g(x)=acosx+3∈[3﹣a,3+a],
此時滿足,即,得2≤a≤3,
綜上a或2≤a≤3,
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負(fù)半軸上.若(為原點),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項和為,并且,數(shù)列滿足:,,記數(shù)列的前n項和為.
(1)求數(shù)列的通項公式及前n項和為;
(2)求數(shù)列的通項公式及前n項和為;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( )
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗:將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義首項為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項和.
①求數(shù)列{bn}的通項公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對任意正整數(shù)k,當(dāng)k≤m時,都有成立,求m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com