如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,垂足為D,則線段AE的長等于
 
考點:與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:連接OC,先證得三角形OBC是等邊三角形,從而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大;考慮到直角三角形ABE中,利用角的關(guān)系即可求得邊AE的長.
解答: 解:如圖,連接OC,
因為BC=OB=OC=3,
所以∠CBO=60°,
因為∠DCA=∠CBO,
所以∠DCA=60°,
又AD⊥DC得∠DAC=30°,
又因為∠ACB=90°,
得∠CAB=30°,那么∠EAB=60°,
從而∠ABE=30°,
于是AE=3.
故答案為:3.
點評:熟練掌握圓的性質(zhì)、切線的性質(zhì)、等邊三角形的判定、含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2-9x+a
(1)對于任意實數(shù)x,f′(x)≥m恒成立,求m的取值范圍;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+2mx+2m+1=0在(-1,0)和(1,2)各有一個根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個六角形體育館的一角MAN內(nèi),用長為a的圍欄設(shè)置一個運動器材儲存區(qū)域(如圖所示),已知∠A=120°,B是墻角線AM上的一點,C是墻角線AN上的一點.
(1)若BC=a=20,求儲存區(qū)域面積的最大值;
(2)若AB=AC=10,在折線MBCN內(nèi)選一點D,使BD+DC=20,求四邊形儲存區(qū)域DBAC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知多項式(1+x)+(1+x)2+…+(1+x)n=b0+b1x+b2x2+…+bnxn,且滿足b1+b2+…+bn=26,則正整數(shù)n的一個可能值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓O:x2+y2=1外一點P(2,2)作圓O的兩條切線,切點分別為A,B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,點P在橢圓C上,線段PF與圓x2+y2=
1
4
b2相切于點Q,且
PQ
=
QF
,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z和
z+3
1-i
都是純虛數(shù),那么z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ex在(4,y0)處的切線與直線ax+y+1=0垂直,則a=
 

查看答案和解析>>

同步練習(xí)冊答案