用數(shù)學(xué)歸納法證明不等式,第二步由k到k+1時(shí)不等式左邊需增加(      )

A.                                 B.

C.                D.

 

【答案】

D

【解析】

試題分析:根據(jù)題意,由于證明不等式,第二步由k到k+1時(shí)不等式左邊需增加,由于左側(cè)表示的為項(xiàng)的和,因此則增加了,故答案為D.

考點(diǎn):數(shù)學(xué)歸納法

點(diǎn)評(píng):主要是考查了數(shù)學(xué)歸納法的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學(xué)歸納法證明不等式f(2n)>
n
2
時(shí),f(2k+1)比f(2k)多的項(xiàng)數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過程中,由“k推導(dǎo)k+1”時(shí),不等式的左邊增加了(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應(yīng)取
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式2n>n2時(shí),第一步需要驗(yàn)證n0=( 。⿻r(shí),不等式成立.

查看答案和解析>>

同步練習(xí)冊答案