“拋階磚”是國外游樂場的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎. 不少人被高額獎金所吸引,紛紛參與此游戲但很少有人得到獎品,請用所學(xué)的概率知識解釋這是為什么.

分析:在拋階磚游戲中,首先可以判定此試驗為幾何概型,我們?yōu)榱嗣枋雒恳淮坞S機(jī)試驗的結(jié)果只需要確定金幣圓心O的位置即可,一旦圓心位置確定,只要當(dāng)圓心O到其最近正方形的各邊的距離大于其半徑時,便可獲大獎.由此不難想到一種臨界狀態(tài),就是當(dāng)金幣與正方形的一邊相切時,此時圓心O到該邊的距離為1,顯然只有當(dāng)圓心O到最近正方形的各邊的距離大于1時才能獲獎,所以若中獎,金幣圓心必位于小正方形區(qū)域A內(nèi).


解:若中獎,金幣圓心必位于下圖的小正方形區(qū)域A內(nèi).圓心隨機(jī)地落在“階磚”的任何位置,所以這是一個幾何概型.其概率為≈0.0022.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


A高校自主招生設(shè)置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設(shè)置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進(jìn)入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、、p2.

(1) 求學(xué)生甲不能通過A高校自主招生考試的概率;

(2) 設(shè)ξ為學(xué)生甲在三道程序中獲優(yōu)的次數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 設(shè)兩個非零向量ab不共線.

(1) 若3(ab).求證:A、B、D三點(diǎn)共線;

(2) 試確定實數(shù)k,使kaba+kb共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點(diǎn)C,試求:

(1) △AOC為鈍角三角形的概率;

(2) △AOC為銳角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在一個盒子中有分別標(biāo)有數(shù)字1,2,3,4,5的5張卡片,現(xiàn)從中一次取出2張卡片,則取到的卡片上的數(shù)字之積為偶數(shù)的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m、n,設(shè)a=(m,n),則滿足|a|<5的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2,現(xiàn)從A、B、C三個箱子中各摸出1個球.

(1) 若用數(shù)組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;

(2) 如果猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對各種不同的搭配方式作比較.在試制某種洗滌劑時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用.根據(jù)試驗設(shè)計原理,通常首先要隨機(jī)選取兩種不同的添加劑進(jìn)行搭配試驗.用X表示所選用的兩種不同的添加劑的芳香度之和.求所選用的兩種不同的添加劑的芳香度之和等于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為50的樣本,則應(yīng)從高二年級抽取________名學(xué)生.

查看答案和解析>>

同步練習(xí)冊答案