(本題滿分13分)
如圖一,平面四邊形關(guān)于直線對稱,。
把沿折起(如圖二),使二面角的余弦值等于。對于圖二,
(Ⅰ)求;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值。
(Ⅰ);(Ⅱ)見解析;(Ⅲ).
【解析】
試題分析:(I)取BD的中點(diǎn)E,先證得∠AEC就是二面角A-BD-C的平面角,再在△ACE中利用余弦定理即可求得AC;
(II)欲證線面垂直,轉(zhuǎn)化為證明線線垂直,證明AC⊥BC,AC⊥CD即可;
(III)欲求直線AC與平面ABD所成角,先結(jié)合(I)中的垂直關(guān)系作出直線AC與平面ABD所成角,最后利用直角三角形中的邊角關(guān)系即可求出所成角的正弦值.
解:(Ⅰ)取的中點(diǎn),連接,
由,得:
就是二面角的平面角,……………2分
在中,
…………………………………4分
(Ⅱ)由,
, 又平面.……………8分
(Ⅲ)方法一:由(Ⅰ)知平面平面
∴平面平面平面平面,
作交于,則平面,
就是與平面所成的角.……13分
方法二:設(shè)點(diǎn)到平面的距離為,
∵
于是與平面所成角的正弦為 .
方法三:以所在直線分別為軸,軸和軸建立空間直角坐標(biāo)系, 則.
設(shè)平面的法向量為,則
, ,
取,則, 于是與平面所成角的正弦即
.
考點(diǎn):本試題主要考查了余弦定理的運(yùn)用,二面角、線面角的求法,線面垂直的判定,以及數(shù)形結(jié)合數(shù)學(xué)、空間想象能力或用向量解決立體幾何問題的方法能力.
點(diǎn)評:解決該試題的關(guān)鍵是利用定義法得到二面角是該試題的突破口,并能結(jié)合三角形的與線訂立的到邊AC的長度。熟練運(yùn)用線面垂直的判定定理和性質(zhì)定理。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
已知集合,,.
(1) 求,; (2) 若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)的三個內(nèi)角依次成等差數(shù)列.
(Ⅰ)若,試判斷的形狀;
(Ⅱ)若為鈍角三角形,且,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分13分)
在銳角中,,,分別為內(nèi)角,,所對的邊,且滿足.
(Ⅰ)求角的大;
(Ⅱ)若,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題
(本題滿分13分)在展開式中,求:
(1)第6項(xiàng); (2) 第3項(xiàng)的系數(shù); (3)常數(shù)項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級學(xué)校) 題型:解答題
(本題滿分13分)
如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.
(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點(diǎn)M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點(diǎn)M的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com