【題目】某校在高二年級實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:

課程

數(shù)學(xué)1

數(shù)學(xué)2

數(shù)學(xué)3

數(shù)學(xué)4

數(shù)學(xué)5

合計(jì)

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X﹣Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

【答案】
(1)解:從選出的10名學(xué)生中選修數(shù)學(xué)1的人應(yīng)為10× =1人,選修數(shù)學(xué)2的人應(yīng)為10× =3人,選修數(shù)學(xué)3的人應(yīng)為10× =3人,選修數(shù)學(xué)4的人應(yīng)為10× =1人,選修數(shù)學(xué)1的人應(yīng)為10× =1人.

從選出的10名學(xué)生中隨機(jī)抽取3人共有 =120種選法,選出的這3人中至少有2人選擇數(shù)學(xué)2的有 + =22種

,∴這3人中至少有2人選擇數(shù)學(xué)2的概率P= =


(2)解:X的可能取值為0,1,2,3.Y的可能取值為0,1.ξ的可能取值為﹣1,0,1,2,3.

P(ξ=﹣1)=P(X=0,Y=1)= =

P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)= =

P(ξ=1)=P(X=1,Y=0)+P(X=2,Y=1)= =

P(ξ=2)=P(X=2,Y=0)= =

P(ξ=3)=P(X=3,Y=0)= = .ξ的分布列為:

ξ

﹣1

0

1

2

3

P

∴Eξ=﹣1× +0× +1× +2× +3× =


【解析】(1)從選出的10名學(xué)生中選修數(shù)學(xué)1的人應(yīng)為10× =1人,同理可得選修數(shù)學(xué)2的人應(yīng)為3人,選修數(shù)學(xué)3的人應(yīng)為3人,選修數(shù)學(xué)4的人應(yīng)為1人,選修數(shù)學(xué)1的人應(yīng)為1人.從選出的10名學(xué)生中隨機(jī)抽取3人共有 =120種選法,選出的這3人中至少有2人選擇數(shù)學(xué)2的有 + =22種,即可得出這3人中至少有2人選擇數(shù)學(xué)2的概率P.(2)X的可能取值為0,1,2,3.Y的可能取值為0,1.ξ的可能取值為﹣1,0,1,2,3.P(ξ=﹣1)=P(X=0,Y=1)= ,P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)= .P(ξ=1)=P(X=1,Y=0)+P(X=2,Y=1)= .P(ξ=2)=P(X=2,Y=0)= .P(ξ=3)=P(X=3,Y=0)= .即可得出ξ的分布列及其Eξ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為A,B,直線l斜率大于0,且l經(jīng)過橢圓的右焦點(diǎn)F,與橢圓交于兩點(diǎn)P,Q,若△AFP,△BFQ的面積分別為S1,S2,若,則直線l的斜率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.

)求拋物線的方程;

)已知直線和拋物線交于點(diǎn),命題若直線過定點(diǎn)(0,1),則

請判斷命題的真假,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1的右焦點(diǎn)F,過焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx(ω>0),將y=f(x)的圖象向右平移 個(gè)單位長度后,若所得圖象與原圖象重合,則ω的最小值等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要AB,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 屆夏季奧林匹克運(yùn)動會將于2016年8月5日 21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

 

第31屆里約

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

中國

26

38

51

32

28

俄羅斯

19

24

24

27

32

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)下表是近五屆奧運(yùn)會中國代表團(tuán)獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間 (時(shí)間代號)變化的數(shù)據(jù):

27

28

29

30

31

時(shí)間代號(x)

1

2

3

4

5

金牌數(shù)之和(y枚)

28

60

111

149

175

作出散點(diǎn)圖如下:

①由圖中可以看出,金牌數(shù)之和 與時(shí)間代號 之間存在線性相關(guān)關(guān)系,請求出 關(guān)于 的線性回歸方程;

②利用①中的回歸方程,預(yù)測2020年第32屆奧林匹克運(yùn)動會中國代表團(tuán)獲得的金牌數(shù).

參考數(shù)據(jù):,,

附:對于一組數(shù)據(jù) ,,,其回歸直線的斜率的最小二乘估計(jì)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:α∈R,sin(π﹣α)=cosα;命題q:“0<a<4”是“關(guān)于x的不等式ax2+ax+1>0的解集是實(shí)數(shù)集R”的充分必要條件,則下面結(jié)論正確的是(
A.p是假命題
B.q是真命題
C.“p∧q”是假命題
D.“p∨q”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是(

A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1

查看答案和解析>>

同步練習(xí)冊答案