【題目】如圖,在直三棱柱中,,,點DE分別是線段BC,上的動點(不含端點),且.則下列說法正確的是(

A.平面

B.該三棱柱的外接球的表面積為

C.異面直線所成角的正切值為

D.二面角的余弦值為

【答案】AD

【解析】

由平行線分線段成比例可知,可判斷A;由題意知直三棱柱是長方體沿對角面切開的一半,故外接球為長方體外接球,球心在中點,即可判斷B;,所以異面直線所成角為,求解即可判斷C;以A為坐標(biāo)原點,以,的方向分別為x,y,z軸的正方向建立空間直角坐標(biāo)系,利用向量法求二面角即可判斷D.

在直三棱柱中,四邊形是矩形,

因為,所以不在平面內(nèi),平面,

所以平面,A項正確;

因為,所以

因為,所以,所以,

易知是三棱柱外接球的直徑,

所以三棱柱外接球的表面積為,所以B項錯誤;

因為,所以異面直線所成角為

中,,,

所以,所以C項錯誤;

二面角即二面角,

以A為坐標(biāo)原點,以,的方向分別為xy,z軸的正方向建立空間直角坐標(biāo)系,如圖

,

,,,

設(shè)平面的法向量,

,即,令可得,

設(shè)平面的一個法向量為

,即,令可得

故二面角的余弦值為,所以D項正確.

故選:AD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,有下述四個結(jié)論:

①若的重心,則

②若邊上的一個動點,則為定值2

③若邊上的兩個動點,且,則的最小值為

④已知內(nèi)一點,若,且,則的最大值為2

其中所有正確結(jié)論的編號是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代重要建筑的室內(nèi)上方,通常會在正中部位做出向上凸起的窟窿狀裝飾,這種裝飾稱為藻井.北京故宮博物院內(nèi)的太和殿上方即有藻井(圖1),全稱為龍風(fēng)角蟬云龍隨瓣枋套方八角深金龍藻井.它展示出精美的裝飾空間和造型藝術(shù),是我國古代豐富文化的體現(xiàn),從分層構(gòu)造上來看,太和殿藻井由三層組成:最下層為方井,中為八角井,上為圓井.2是由圖1抽象出的平面圖形,若在圖2中隨機取一點,則此點取自圓內(nèi)的概率為( )

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/STEM/4d65bbaaf0c447efbbb2157ff8983df0.png]

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形區(qū)域OABC內(nèi)有以OA為半徑的圓弧.現(xiàn)決定從AB邊上一點D引一條線段DE與圓弧相切于點E,從而將正方形區(qū)域OABC分成三塊:扇形COE為區(qū)域I,四邊形OADE為區(qū)域II,剩下的CBDE為區(qū)域III.區(qū)域I內(nèi)栽樹,區(qū)域II內(nèi)種花,區(qū)域III內(nèi)植草.每單位平方的樹、花、草所需費用分別為、、,總造價是W,設(shè)

1)分別用表示區(qū)域I、IIIII的面積;

2)將總造價W表示為的函數(shù),并寫出定義域;

3)求為何值時,總造價W取最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結(jié)論:

平面;

;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5人并排站成一行,如果甲乙兩人不相鄰,那么不同的排法種數(shù)是__________.(用數(shù)字作答);5人并排站成一行,甲乙兩人之間恰好有一人的概率是__________(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線方程為,求的值;

2)求函數(shù)的極值點;

3)設(shè),若當(dāng)時,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點坐標(biāo)為,,過垂直于長軸的直線交橢圓于、兩點,且.

1)求橢圓的方程;

2)過的直線與橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若曲線有且僅有一個公共點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案