【題目】三個數(shù)a、b、c∈(0, ),且cosa=a,sin(cosb)=b,cos(sinc)=c,則a、b、c從小到大的順序是

【答案】b<a<c
【解析】解:先證明當x∈(0, )時,sinx<x 設y=sinx﹣x,則y′=cosx﹣1<0,∴y=sinx﹣x為(0, )上的減函數(shù),∴y<sino﹣0=0,即sinx<x
同理可證明f(x)=sin(cosx)﹣x為(0, )上的減函數(shù),g(x)=cos(sinx)﹣x為(0, )上的減函數(shù)
∵sina<a
∴cos(sina)﹣a=cos(sina)﹣cosa>0,而cos(sinc)﹣c=0,
∴g(a)>g(c),a、c∈(0, ),
∴a<c
同理∵x∈(0, )時,sinx<x,∴sin(cosa)<cosa
∴sin(cosa)﹣a=sin(cosa)﹣cosa<0,而sin(cosb)﹣b=0
∴f(a)<f(b),a、b∈(0, ),
∴a>b
綜上所述,b<a<c
所以答案是b<a<c

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= ,求A∩B.
(2)若A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,滿足x2+y2≤1,x≥0,y≥0的點P(x,y)的集合對應的平面圖形的面積為 ;類似的,在空間直角坐標系O﹣xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y,z)的集合對應的空間幾何體的體積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a和b的值.
(2)說明函數(shù)g(x)的單調性;若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.
(3)設 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市政府為了確定一個較為合理的居民用電標準,必須先了解全市居民日常用電量的分布情況.現(xiàn)采用抽樣調查的方式,獲得了n位居民在2012年的月均用電量(單位:度)數(shù)據(jù),樣本統(tǒng)計結果如下圖表:

頻 數(shù)

頻 率

[0,10)

0.05

[10,20)

0.10

[20,30)

30

[30,40)

0.25

[40,50)

0.15

[50,60]

15

n

1


(1)求月均用電量的中位數(shù)與平均數(shù)估計值;
(2)如果用分層抽樣的方法從這n位居民中抽取8位居民,再從這8位居民中選2位居民,那么至少有1位居民月均用電量在30至40度的概率是多少?
(3)用樣本估計總體,把頻率視為概率,從這個城市隨機抽取3位居民(看作有放回的抽樣),求月均用電量在30至40度的居民數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:sin230°+sin290°+sin2150°= ;
sin25°+sin265°+sin2125°=
sin212°+sin272°+sin2132°= ;
通過觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并給予的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若關于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB切⊙O于點B,直線AO交⊙O于D,E兩點,BC⊥DE,垂足為C.

(1)證明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求a,b的值;

2)如果是函數(shù)的兩個零點, 為函數(shù)的導數(shù),證明:

查看答案和解析>>

同步練習冊答案