【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( 。

A.
B.
C.
D.

【答案】A
【解析】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的兩根為a、b;
根據(jù)函數(shù)零點與方程的根的關(guān)系,可得f(x)=(x﹣a)(x﹣b)的零點就是a、b,即函數(shù)圖象與x軸交點的橫坐標;
觀察f(x)=(x﹣a)(x﹣b)的圖象,可得其與x軸的兩個交點分別在區(qū)間(﹣∞,﹣1)與(0,1)上,
又由a>b,可得b<﹣1,0<a<1;
在函數(shù)g(x)=ax+b可得,由0<a<1可得其是減函數(shù),
又由b<﹣1可得其與y軸交點的坐標在x軸的下方;
分析選項可得A符合這兩點,BCD均不滿足;
故選A.
根據(jù)題意,易得(x﹣a)(x﹣b)=0的兩根為a、b,又由函數(shù)零點與方程的根的關(guān)系,可得f(x)=(x﹣a)(x﹣b)的零點就是a、b,觀察f(x)=(x﹣a)(x﹣b)的圖象,可得其與x軸的兩個交點分別在區(qū)間(﹣∞,﹣1)與(0,1)上,又由a>b,可得b<﹣1,0<a<1;根據(jù)函數(shù)圖象變化的規(guī)律可得g(x)=aX+b的單調(diào)性即與y軸交點的位置,分析選項可得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐的底面圓心為,直徑為, 為半圓弧的中點, 為劣弧的中點,且

(1)求異面直線所成的角的大小;

(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果實數(shù)m、n滿足不等式組 , 那么m2+n2的取值范圍是( 。
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sinx的圖象向右平移三個單位長度得到圖象C,再將圖象C上的所有點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變)得到圖象C1 , 則C1的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且對任意 , 恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為﹣4,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱中, 為底面的對角線, 的中點.

(1)求證: ;

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)f(x)與g(x)相等的一組是(  )
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=(4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點為, 的中點.求:

(1) 所在直線的方程;

(2) 邊上中線所在直線的方程;

(3) 邊上的垂直平分線的方程.

查看答案和解析>>

同步練習冊答案