【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)證明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱錐D-ABC的表面積.

【答案】(1)見解析;(2).

【解析】試題分析:()翻折后,直線AD與直線DC、DB都垂直,可得直線與平面BDC垂直,再結(jié)合AD是平面ADB內(nèi)的直線,可得平面ADB與平面垂直;

)根據(jù)圖形特征可得△ADB、△DBC△ADC是全等的等腰直角三角形,△ABC是等邊三角形,利用三角形面積公式可得三棱錐D﹣ABC的表面積.

解:(折起前ADBC邊上的高,

△ABD折起后,AD⊥DC,AD⊥DB,

DB∩DC=D,

∴AD⊥平面BDC,

∵AD平面ABD

平面ADB⊥平面BDC

)由()知,DA⊥DB,DB⊥DCDC⊥DA,

∵DB=DA=DC=1,∴AB=BC=CA=,

從而

所以三棱錐D﹣ABC的表面積為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是常數(shù).

(1)當時,求函數(shù)的值域;

(2)當時,求方程的解集;

(3)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第n個幾何體的表面積是個平方單位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,f(0)f(2)3.

(1)f(x)的解析式;

(2)f(x)在區(qū)間[2a,a1]上不單調(diào)求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方,試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進行,每位選手最多有5次選題答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰.已知選手甲答題的正確率為 . (Ⅰ)求選手甲可進入決賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個數(shù)為ξ,試寫出ξ的分布列,并求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線C1:ρsin2θ=4cosθ,以極點為坐標原點,極軸為軸正半軸建立直角坐標系xOy,曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1、C2的直角坐標方程;
(2)若曲線C1與曲線C2交于A、B兩點,且定點P的坐標為(2,0),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為

A.30° B.45°

C.60° D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),直線l與拋物線C相交于A,B兩點,P為拋物線上一點,當直線l過拋物線焦點時,|AB|的最小值為2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若AB的中點為(3,1),且直線PA,PB的傾斜角互補,求△PAB的面積.

查看答案和解析>>

同步練習冊答案