【題目】中國古代數(shù)學(xué)著作《九章算術(shù)》中有一個這樣的問題:“某賈人擅營,月入益功疾(注:從第2月開始,每月比前一月多入相同量的銅錢,3月入25貫,全年(按12個月計)共入510貫“,則該人每月比前一月多入_________________貫,第12月營收貫數(shù)為_________________.

【答案】5 70

【解析】

設(shè)每個月的收入為等差數(shù)列{an}.公差為d.可得a3=25,S12=510.利用等差數(shù)列的通項公式與求和公式即可得出.

設(shè)每個月的收入為等差數(shù)列{an}.公差為d.

則a3=25,S12=510.

∴a1+2d=25,12a1+d=510,

解得a1=15,d=5,

a1+11d=15+55=70

故答案為:5,70

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)我們所處的北半球為冬季的時候,新西蘭的惠靈頓市恰好是盛夏,因此北半球的人們冬天愿意去那里旅游,下面是一份惠靈頓機場提供的月平均氣溫統(tǒng)計表.

(月份)

1

2

3

4

5

6

7

8

9

10

11

12

17.3

17.9

17.3

15.8

13.7

11.6

10.06

9.5

10.06

11.6

13.7

15.8

1)根據(jù)這個統(tǒng)計表提供的數(shù)據(jù),為惠靈頓市的月平均氣溫作出一個函數(shù)模型;

2)當(dāng)自然氣溫不低于13.7℃時,惠靈頓市最適宜旅游,試根據(jù)你所確定的函數(shù)模型,確定惠靈頓市的最佳旅游時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,加快水污染防治,建設(shè)美麗中國.根據(jù)環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計數(shù)據(jù),得到如下頻率分布表:

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨立.

(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經(jīng)濟影響如下:當(dāng)時,沒有影響;當(dāng)時,經(jīng)濟損失為10萬元;當(dāng)時,經(jīng)濟損失為60萬元.為減少損失,現(xiàn)有三種應(yīng)對方案:

方案一:防治350噸的污水排放,每年需要防治費3.8萬元;

方案二:防治310噸的污水排放,每年需要防治費2萬元;

方案三:不采取措施.

試比較上述三種文案,哪種方案好,并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )

若直線,則在平面內(nèi)一定不存在與直線平行的直線.

若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

若直線,則在平面內(nèi)一定存在與直線垂直的直線.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①命題“若,則方程無實根”的否命題;

②命題“在中,,那么為等邊三角形”的逆命題;

③命題“若,則”的逆否命題;

④“若,則的解集為”的逆命題;

其中真命題的序號為(

A.①②③④B.①②④C.②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中有云:“有木長三丈,圍之八尺,葛生其下,纏木兩周,上與木齊,問葛長幾何?”意思為:圓木長3丈,圓周為8尺,葛藤從圓木的底部開始向上生長,繞圓木兩周,剛好頂部與圓木平齊,問葛藤最少長幾尺(注:1丈即10尺)?該問題的答案為34.若圓木長為3尺,圓周為2尺,同樣繞圓木兩周剛好頂部與圓木平齊,那葛藤最少又是長( )尺?

A.34B.5C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機抽取名學(xué)生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分數(shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電信公司為了加強新用5G技術(shù)的推廣使用,為該公司的用戶制定了一套5G月消費返流量費的套餐服務(wù)方案;當(dāng)月消費金額不超過100元時,按消費金額的進行返還;當(dāng)月消費金額超過100元時,除消費金額中的100元仍按進行返還外,若另超出100元的部分消費金額為A元,則超過部分按進行返還,記用戶當(dāng)月返還所得流量費y(單位:),消費金額x(單位:)

1)寫出該公司用戶月返還所得流量費的函數(shù)模型;

2)如果用戶小李當(dāng)月獲返還的流量費是12元,那么他這個月的消費金額是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓與一等軸雙曲線相交,是其中一個交點,并且雙曲線的頂點是該橢圓的焦點,雙曲線的焦點是橢圓的左、右頂點,設(shè)為該雙曲線上異于頂點的任意一點,直線的斜率分別為,且直線與橢圓的交點分別為、、.

1)求橢圓和雙曲線的標準方程;

2)(i)證明:

ii)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案