已知矩形ABCD的邊AB=4cm,BC=3cm,如圖所示,矩形的頂點A,B為某一橢圓的兩個焦點,且橢圓經(jīng)過矩形的另外兩個頂點C,D,試建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓的方程.
分析:由題意建立直角坐標(biāo)系,可得點A,B,C的坐標(biāo),設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)題意知2a=AC+BC,求得a,進而根據(jù)b,a和c的關(guān)系求得b,則橢圓的方程可得.
解答:解:如圖,以O(shè)為原點,AB所在的直線為x軸建立坐標(biāo)系,
由題意可得點A,B,C的坐標(biāo)分別為(-2,0),( 2,0),( 2,3).
設(shè)橢圓的標(biāo)準(zhǔn)方程是
x2
a2
+
y2
b2
=1
(a>b>0).
則2a=AC+BC,
即2a=5+3=8,所以a=4.
所以b2=a2-c2=16-4=12.
所以橢圓的標(biāo)準(zhǔn)方程是
x2
16
+
y2
12
=1
點評:本題主要考查了橢圓的標(biāo)準(zhǔn)方程以及直線與橢圓的關(guān)系.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有以下五個數(shù)據(jù):( 1 ) a=
1
2
 ;    ( 2 ) a=1 ;    ( 3 )a=
;    ( 4 ) a=2 ;    ( 5 ) a=4

當(dāng)在BC邊上存在點Q,使PQ⊥QD時,則a可以取
①或②
①或②
.(填上一個正確的數(shù)據(jù)序號即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂三模)已知矩形ABCD的邊AB⊥x軸,且矩形ABCD恰好能完全覆蓋函數(shù)y=asin2ax(a>0)的一個完整周期的圖象,則當(dāng)a變化時,矩形ABCD的周長的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的邊長為2,點P在線段BD上運動,則
AP
AC
=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的邊AB=1,BC=a,PA⊥平面ABCD,問BC邊上是否存在點Q,使得PQ⊥QD?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案