【題目】如圖,在折線中,,,分別是的中點,若折線上滿足條件的點至少有個,則實數(shù)的取值范圍是___________.

【答案】

【解析】

BC的垂直平分線為y軸,以BCx軸,建立如圖所示的平面直角坐標(biāo)系,分別表示各個點的坐標(biāo),設(shè)Px,y),根據(jù)向量的數(shù)量積可得當(dāng)k+90時,點P的軌跡為以(0,)為圓心,以為半徑的圓,結(jié)合圖象,即可求出滿足條件的點P至少有4個的k的取值范圍.

解:以BC的垂直平分線為y軸,以BCx軸,建立如圖所示的平面直角坐標(biāo)系,

ABBCCD4,∠ABC=∠BCD120°,

B(﹣2.0),C2,0),A(﹣4,2),D4,2),

E、F分別是ABCD的中點,

E(﹣3),F3),

設(shè)Px,y),﹣4x40y2,

∴(﹣3x,3xy)=,

當(dāng)k+90時,點P的軌跡為以(0)為圓心,以為半徑的圓,

當(dāng)圓與直線DC相切時,此時圓的半徑r,此時點有2個,

當(dāng)圓經(jīng)過點C時,此時圓的半徑為r,此時點P4個,

∵滿足條件的點P至少有4個,結(jié)合圖象可得,

k+97,

解得k≤﹣2,

故實數(shù)k的取值范圍為[,﹣2],

故答案為:[,﹣2]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)來臨之際,某超市為了確定此次春節(jié)年貨的進貨方案,統(tǒng)計去年春節(jié)前后50天年貨的日銷售量(單位:kg),得到如圖所示的頻率分布直方圖.

(1)求這50天超市日銷售量的平均數(shù);(視頻率為概率,以各組區(qū)間的中點值代表該組的值)

(2)先從日銷售在,內(nèi)的天數(shù)中,按分層抽樣隨機抽取4天進行比較研究,再從中選2天,求這2天的日銷售量都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若關(guān)于的不等式上恒成立,求的取值范圍;

(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中

1)若數(shù)列前四項,,,依次成等差數(shù)列,求,的值;

2)若,且數(shù)列為等比數(shù)列,求的值;

3)若,且是數(shù)列的最小項,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾分一分,城市美十分;垃圾分類,人人有責(zé).某市為進一步推進生活垃圾分類工作,調(diào)動全民參與的積極性,舉辦了垃圾分類游戲挑戰(zhàn)賽.據(jù)統(tǒng)計,在為期個月的活動中,共有萬人次參與.為鼓勵市民積極參與活動,市文明辦隨機抽取名參與該活動的網(wǎng)友,以他們單次游戲得分作為樣本進行分析,由此得到如下頻數(shù)分布表:

單次游戲得分

頻數(shù)

1)根據(jù)數(shù)據(jù),估計參與活動的網(wǎng)友單次游戲得分的平均值及標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(其中標(biāo)準(zhǔn)差的計算結(jié)果要求精確到

2)若要從單次游戲得分在、的三組參與者中,用分層抽樣的方法選取人進行電話回訪,再從這人中任選人贈送話費,求此人單次游戲得分不在同一組內(nèi)的概率.

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,其中是等差數(shù)列,且,則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】華東師大二附中樂東黃流中學(xué)位于我國南海邊,有一片美麗的沙灘和一彎天然的海濱浴場.如圖,海岸線MAN,(海岸線MAN上方是大海),現(xiàn)用長為BC的欄網(wǎng)圍成一個三角形學(xué)生游泳場所,其中.

1)若,求三角形游泳場所面積最大值;

2)若BC=600,,由于學(xué)生人數(shù)的增加需要擴大游泳場所面積,現(xiàn)在折線MBCN上方選點D,現(xiàn)用長為BD,DC的欄圍成一個四邊形游泳場所DBAC,使,求四邊形游泳場所DBAC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=,△BF1F2為直角三角形.

(1)求橢圓C的方程;

(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績的情況,該州教育局組織高三理科生進行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機抽取了100名理科生,,將他們的化學(xué)成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.

1)求a的值;

2)記A表示事件“從參加考試的所有理科生中隨機抽取一名學(xué)生,該學(xué)生的化學(xué)成績不低于70分”,試估計事件A發(fā)生的概率;

3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取10名,再從這10名學(xué)生中隨機抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案