設(shè)定圓,動(dòng)圓過點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為.
(1)求軌跡的方程;
(2)已知,過定點(diǎn)的動(dòng)直線交軌跡于、兩點(diǎn),的外心為.
若直線的斜率為,直線的斜率為,求證:為定值.
(1);(2)
【解析】
試題分析:(1)求軌跡的方程,由題意定圓,動(dòng)圓過點(diǎn)且與圓相切,可知點(diǎn)在圓內(nèi),由此可得圓內(nèi)切于圓,可得,根據(jù)橢圓定義可知軌跡為橢圓,故可求出軌跡的方程;(2)求證:為定值,由題意直線斜率不為0,可設(shè)直線為, 設(shè)點(diǎn),,由,由根與系數(shù)關(guān)系得,寫出直線的中垂線方程,與直線的中垂線方程,求出點(diǎn)的坐標(biāo),即得直線的斜率,從而可得為定值.
試題解析:(1)∵點(diǎn)在圓內(nèi) ∴圓內(nèi)切于圓
∴
∴點(diǎn)的軌跡.的方程為 5分
(2)由存在 ∴ 直線斜率不為0
設(shè)直線為 設(shè)點(diǎn),
直線的中垂線方程為:
即 ∵ ∴即
即 即
同理可得直線的中垂線方程為: 7分
∴點(diǎn)的坐標(biāo)滿足
9分
又∵直線的斜率為 ∴() 13分
考點(diǎn):橢圓的方程,直線與二次曲線的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省鷹潭市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
正方形的邊長為2,點(diǎn)、分別在邊、上,且,,將此正
方形沿、折起,使點(diǎn)、重合于點(diǎn),則三棱錐的體積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
單位向量,且,則的最小值為( )
A. B.1 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量,且∥,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)于實(shí)數(shù)和,定義運(yùn)算,運(yùn)算原理如右圖所示,則式子的值為( )
A.6 B.7 C.8 D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
若關(guān)于的不等式的解集不為空集,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
給出下列命題,其中真命題的個(gè)數(shù)是( )
①存在,使得成立;
②對(duì)于任意的三個(gè)平面向量、、,總有成立;
③相關(guān)系數(shù) (),值越大,變量之間的線性相關(guān)程度越高.
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)均為正實(shí)數(shù),且,則的最小值為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=()x,若對(duì)任意的x∈[a, a+l],
不等式f(x+a)≥f2(x)恒成立,則實(shí)數(shù)a的取值范圍是____ 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com