如圖,ADBC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是           .

 
BEADE,連接CE,則AD⊥平面BEC,所以CEAD,由題設(shè),BC都是在以AD為焦距的橢球上,且BE、CE都垂直于焦距AD,所以BE=CE. 取BC中點(diǎn)F
連接EF,則EFBC,EF=2,,四面體ABCD的體積,顯然,當(dāng)EAD中點(diǎn),即B是短軸端點(diǎn)時(shí),BE有最大值為b=,所以.
[評注] 本題把橢圓拓展到空間,對缺少聯(lián)想思維的考生打擊甚大!當(dāng)然,作為填空押軸題,區(qū)分度還是要的,不過,就搶分而言,膽大、靈活的考生也容易找到突破點(diǎn):AB=BD(同時(shí)AC=CD),從而致命一擊,逃出生天!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是的二面角內(nèi)一點(diǎn),垂足,
則AB的長為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓柱M的底面圓的半徑與球O的半徑相同,若圓柱M與球O的表面積相等,則它們的體積之比              .(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知OA是球O的半徑,過點(diǎn)A作與直線OA成的平面截球面得到圓M,若圓M的面積為15,則球O的表面積是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三棱錐中,三條棱,,兩兩垂直,且>>,分別經(jīng)過三條棱,作一個(gè)截面平分三棱錐的體積,截面面積依次為,,,則,,的大小關(guān)系為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在長方體ABCD­A1B1C1D1中,底面是邊長為2的正方形,高為4,則點(diǎn)A1到截面AB1D1的距離是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)圓柱和一個(gè)圓錐的底面直徑和他們的高都與某一個(gè)球的直徑相等,這時(shí)圓柱、圓錐、球的體積之比為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長方體的一個(gè)頂點(diǎn)上的三條棱長分別是3,4,5 ,且它的8個(gè)頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的表面積是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為1,線段上有兩個(gè)動(dòng)點(diǎn)E, F,且,則四面體的體積              

第12題

 

查看答案和解析>>

同步練習(xí)冊答案