【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長(zhǎng)為( )
A. B. C. D.
【答案】C
【解析】分析:記A1在面ABCD內(nèi)的射影為O,O在∠BAD的平分線上,說明∠BAD的平分線即菱形ABCD的對(duì)角線AC,求AC1的長(zhǎng).
解答:解:記A1在面ABCD內(nèi)的射影為O,
∵∠A1AB=∠A1AD,
∴O在∠BAD的平分線上,
由O向AB,AD兩邊作垂線,垂足分別為E,F(xiàn),連接A1E,A1F,A1E,A1F分別垂直AB,AD于E,F(xiàn)
∵AA1=3,∠A1AB=∠A1AD=60°,
∴AE=AF=
又四棱柱ABCD-A1B1C1D1的底面ABCD為矩形
∴∠OAF=∠OAE=45°,且OE=OF=,可得OA=
在直角三角形A1OA中,由勾股定理得A1O=
過C1作C1M垂直底面于M,則有△C1MC≌△A1OA,由此可得M到直線AD的距離是,M到直線AB的距離是,C1M=A1O=
所以AC1 ==
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高二學(xué)生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高二年級(jí)學(xué)生中隨機(jī)抽取名按上學(xué)所需要時(shí)間分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
()根據(jù)圖中數(shù)據(jù)求的值.
()若從第, , 組中用分層抽樣的方法抽取名新生參與交通安全問卷調(diào)查,應(yīng)從第, , 組各抽取多少名新生?
()在()的條件下,該校決定從這名學(xué)生中隨機(jī)抽取名新生參加交通安全宣傳活動(dòng),求第組至少有一志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
(3)在(2)的條件下,任意的0<a<b, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知直線l:x+y+a=0與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是( )
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,則函數(shù)y=f[f(x)]的零點(diǎn)個(gè)數(shù)為( 。
A. 7 B. 6 C. 5 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,….利用這兩組同心圓可以畫出以A、B為焦點(diǎn)的雙曲線. 若其中經(jīng)過點(diǎn)M、N、P的雙曲線的離心率分別是.則它們的大小關(guān)系是 (用“”連接).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1(a為常數(shù)),曲線y=f(x)在與y軸的交點(diǎn)A處的切線斜率為﹣1.
(1)求a的值及函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),證明:x1+x2<2ln2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={x|x2<2x},集合B={x|x< },則A∩(RB)等于( )
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 時(shí),函數(shù)是增函數(shù),因?yàn)?/span>,所以是增函數(shù),這種推理是合情合理.
B. 在平面中,對(duì)于三條不同的直線, , ,若, ,將此結(jié)論放在空間中也是如此,這種推理是演繹推理.
C. 命題: , 的否定是: , .
D. 若分類變量與的隨機(jī)變量的觀察值越小,則兩個(gè)分類變量有關(guān)系的把握性越小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com