【題目】隨著智能手機的普及,網(wǎng)絡(luò)搜題軟件走進了生活,有教育工作者認為,網(wǎng)搜答案可以起到幫助人們學(xué)習(xí)的作用,但對多數(shù)學(xué)生來講,過度網(wǎng)搜答案容易養(yǎng)成依賴心理,對學(xué)習(xí)能力造成損害.為了了解學(xué)生網(wǎng)搜答案的情況,某學(xué)校對學(xué)生一月內(nèi)進行網(wǎng)搜答案的次數(shù)進行了問卷調(diào)查,并從參與調(diào)查的學(xué)生中抽取了男、女生各100人進行抽樣分析,制成如下頻率分布直方圖:
記事件“男生1月內(nèi)網(wǎng)搜答案次數(shù)不高于30次”為,根據(jù)頻率分布直方圖得到的估計值為0.65
(1)求的值;
(2)若一學(xué)生在1月內(nèi)網(wǎng)搜答案次數(shù)超過50次,則稱該學(xué)生為“依賴型”,現(xiàn)從樣本內(nèi)的“依賴型”學(xué)生中,抽取3人談話,求抽取的女生人數(shù)X的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線與軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為元,其它的三個邊角地塊每單位面積價值元.
(1)求等待開墾土地的面積;
(2)如何確定點C的位置,才能使得整塊土地總價值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求過點和函數(shù)的圖像相切的直線方程;
(2)若對任意,有恒成立,求的取值范圍;
(3)若存在唯一的整數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,是等邊三角形,底面是直角梯形,,,是線段的中點,底面,已知.
(1)求二面角的正弦值;
(2)試在平面上找一點,使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=AA1=1,, AB1與A1B相交于點D,M為B1C1的中點 .
(1)求證:CD⊥平面BDM;
(2)求平面B1BD與平面CBD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的是( )
A.已知函數(shù)的定義域為,且在任何區(qū)間內(nèi)的平均變化率均比在同一區(qū)間內(nèi)的平均變化率小,則函數(shù)在上是減函數(shù);
B.已知總體的各個個體的值由小到大依次為2,3,3,7,10,11,12,,18,20,且總體的平均數(shù)為10,則這組數(shù)的75%分位數(shù)為13;
C.方程的解集為;
D.一次函數(shù)一定存在反函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,、分別為、的中點,在此幾何體中,下列結(jié)論中正確的個數(shù)有()
①平面平面
②直線與直線是異面直線
③直線與直線共面
④面與面的交線與平行
A. 3B. 2C. 1D. 0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com