求函數(shù)y=
x-4
x+4
的反函數(shù).
考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知的解析式求出x的表達式,再把x換成y、y換成x,并注明反函數(shù)的定義域.
解答: 解:由y=
x-4
x+4
的得,xy+4y=x-4,解得x=
4(1+y)
1-y
(y≠1),
所以y=
4(1+x)
1-x
(x≠1),
則函數(shù)y=
x-4
x+4
的反函數(shù)是y=
4(1+x)
1-x
(x≠1).
點評:本題考查函數(shù)的反函數(shù)的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PD⊥平面ABCD,∠BAD=60°,Q為AD中點,AD=4,PD=6.
(Ⅰ)若點M在線段PC上,且PM=tPC(t>0),試確定實數(shù)t的值,使得PA∥平面MQB;
(Ⅱ)當(dāng)三棱錐M-BQD的體積為2
3
時,試求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在梯形中ABCD,AB∥CD,AB=2CD,M,N分別是CD,AB的中點,設(shè)
AB
=
e1
AD
=
e2

(1)在圖上作出向量
1
2
e1
+
e2
(不要求寫出作法)
(2)請將
MN
e1
,
e2
表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C中,AB⊥BC,AB=4,BC=6,AA1=8,有一只螞蟻沿著三棱柱的表面從點A爬行到點C1,并且在棱BB1上的一點M稍作停頓,當(dāng)螞蟻爬行距離最短時,BM的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,異面直線A1C1與B1C所成的角是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C與直線l:x+y-2=0和圓P:(x-6)2+(y-6)2=18均相切,求圓C的面積的最小值及此時圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,O為原點,A(-1,0),B(0,
3
),C(3,0),動點D滿足|
CD
|=1,則|
OA
+
OB
+
OD
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo):f(x)=sin(
3
x+θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點p(4,
7
4
)的拋物線y=
1
4
x2的切線方程.

查看答案和解析>>

同步練習(xí)冊答案