【題目】已知數(shù)列中,,且點(diǎn)在直線上;
(1)若數(shù)列滿足:,是數(shù)列的前項(xiàng)和,求.
(2)是否存在同時(shí)滿足以下兩個(gè)條件的三角形?如果存在,求出相應(yīng)的三角形的三邊以及,的值,如果不存在,說(shuō)明理由.
條件1:三邊長(zhǎng)是數(shù)列中的連續(xù)三項(xiàng),其中;
條件2:最小角是最大角的一半.
【答案】(1)(2)存在,三邊長(zhǎng)分別為:,,; 或或
【解析】
(1)將點(diǎn)坐標(biāo)代入直線方程,可知數(shù)列為等差數(shù)列,即可求得數(shù)列的通項(xiàng)公式.將數(shù)列的通項(xiàng)公式代入即可求得數(shù)列的通項(xiàng)公式,即可由裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.
(2)根據(jù)題意,假設(shè)存在這樣的三角形.設(shè)出三角形的三條邊,利用換元法令,用表示出三條邊.由結(jié)合正弦定理與余弦定理,即可解得的值,進(jìn)而求得的值.再反代回原式檢驗(yàn)即可.
(1)由條件可知,則是公差為,首項(xiàng)為的等差數(shù)列,
則,
則,
所以
,
化簡(jiǎn)得.
(2)假設(shè)滿足條件的三角形存在,設(shè)其三邊長(zhǎng)分別為,,,
記,
則三邊長(zhǎng)分別為,,,又記這三邊對(duì)應(yīng)的三個(gè)角分別為,,,
則由題有,則在中,由正弦定理可知:,
即,
又在中,由余弦定理知,
整理可得,解得,
則,又,則,的取值分別為,或,
三角形的三邊長(zhǎng)分別為:,,.
經(jīng)檢驗(yàn),三邊長(zhǎng)分別為,,的三角形滿足題中條件,故滿足條件的三角形存在,
其中,,的取值分別為,或,
三角形的三邊長(zhǎng)分別為,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:
①若,且,則和都是中的最大項(xiàng);
②給定,對(duì)一切,都有;
③若,則中一定有最小項(xiàng);
④存在,使得和同號(hào).
其中正確命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)中表示同一個(gè)函數(shù)的是()
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=x2,g(x)=( )4
C.f(x)=,g(x)=|x|
D.f(x)=,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓,直線經(jīng)過(guò)點(diǎn).若對(duì)任意的實(shí)數(shù),直線被圓截得的弦長(zhǎng)為定值,則直線的方程為( )
A.B.C.D.這樣的直線不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)滿足,當(dāng)時(shí),,設(shè)在上的最大值為,且的前n項(xiàng)和為,若對(duì)任意的正整數(shù)n均成立,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說(shuō)明理由;
(2)是否存在實(shí)數(shù),使得當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
分別求出適合下列條件的直線方程:
(1)經(jīng)過(guò)點(diǎn)且在軸上的截距等于在軸上截距的2倍;
(2)經(jīng)過(guò)直線與的交點(diǎn),且和,等距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視力在4.6到5.0之間的頻率為b,則a,b的值分別為( )
A.0.27,78B.54,0.78C.27,0.78D.54,78
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com