【題目】設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極點(diǎn)x0 , 且f(x1)=f(x0),其中x1x0 , 求證:x1+2x0=3;
(3)設(shè)a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于

【答案】
(1)

解:

,單調(diào)遞增;

, 單調(diào)遞增,在 單調(diào)遞減,在 單調(diào)遞增


(2)

解:由


(3)

解:欲證 在區(qū)間 上的最大值不小于 ,只需證在區(qū)間 上存在 ,

使得 即可

①當(dāng) 時(shí), 上單調(diào)遞減

遞減,成立

當(dāng) 時(shí),

時(shí), ,成立

當(dāng) 時(shí), ,成立


【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì),建立方程關(guān)系,根據(jù)條件求出數(shù)列{cn}的通項(xiàng)公式,結(jié)合等差數(shù)列的定義進(jìn)行證明即可.
(2)求出Tn= (﹣1)kbk2的表達(dá)式,利用裂項(xiàng)法進(jìn)行求解,結(jié)合放縮法進(jìn)行不等式的證明即可
【考點(diǎn)精析】本題主要考查了等差關(guān)系的確定的相關(guān)知識(shí)點(diǎn),需要掌握如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)請(qǐng)?jiān)趫D中所給的點(diǎn)中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在的直線與平面垂直,并給出證明;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?如果存在,求出的長(zhǎng)度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD如圖(1)所示,其中∠ACD=60°,AB=2,AC與BD相交于點(diǎn)O,現(xiàn)沿AC進(jìn)行翻折,使得平面ACD⊥平面ABC,取點(diǎn)E,連接AE,BE,CE,DE,使得線段BE再平面ABC內(nèi)的投影落在線段OB上,得到的圖形如圖(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)證明:DE⊥AC;
(Ⅱ)求二面角A﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ω>0)的最小正周期為π.

(1)求函數(shù)f(x)的單調(diào)增區(qū)間;

(2)將函數(shù)f(x)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象.y=g(x)在區(qū)間[0,10π]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中, , , 。

(1)設(shè),異面直線所成角的余弦值為,求的值;

(2)若的中點(diǎn),求平面和平面所成二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 1(a> )的右焦點(diǎn)為F,右頂點(diǎn)為A,已知 ,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列各曲線的標(biāo)準(zhǔn)方程.

(1)長(zhǎng)軸長(zhǎng)為,離心率為,焦點(diǎn)在軸上的橢圓;

(2)已知雙曲線的漸近線方程為,焦距為,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,點(diǎn)M(m, 0)在x軸的正半軸上,過M點(diǎn)的直線與拋物線 C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(1) 若m=l,且直線的斜率為1,求以AB為直徑的圓的方程;

(2) 是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且

(1)求的值;

(2)設(shè) ,四邊形的面積為,,求的最值及此時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案