【題目】已知圓C內(nèi)有一點(diǎn)P22),過(guò)點(diǎn)P作直線l交圓CAB兩點(diǎn).

1)當(dāng)l經(jīng)過(guò)圓心C時(shí),求直線l的方程;

2)當(dāng)直線l的傾斜角為45時(shí),求弦AB的長(zhǎng).

【答案】(1)2x-y-2=0;(2

【解析】

1)由圓的方程可求出圓心,再根據(jù)直線過(guò)點(diǎn)P、C,由斜率公式求出直線的斜率,由點(diǎn)斜式即可寫(xiě)出直線l的方程;

2)根據(jù)點(diǎn)斜式寫(xiě)出直線l的方程,再根據(jù)弦長(zhǎng)公式即可求出.

1)已知圓C的圓心為C10),因直線過(guò)點(diǎn)P、C,所以直線l的斜率為,直線l的方程為y=2(x-1),即 2x-y-2=0

2)當(dāng)直線l的傾斜角為45時(shí),斜率為1,直線l的方程為y-2=x-2 , x-y=0.

所以圓心C到直線l的距離為

因?yàn)閳A的半徑為3,所以,弦AB的長(zhǎng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形;如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請(qǐng)說(shuō)明理由;

2)寫(xiě)出與橢圓相似且焦點(diǎn)在軸上,短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;

3)如圖:直線與兩個(gè)相似橢圓分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使組成以為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過(guò)點(diǎn)的直線與圓相切,設(shè)直線交拋物線,兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,且,.

1)證明:平面平面

2)若點(diǎn)的中點(diǎn),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.

(1)若,且成等比數(shù)列,求數(shù)列的通項(xiàng)公式;

(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對(duì)任意的,不等式恒成立,求突數(shù)的最小值:

(3)若數(shù)列中有兩項(xiàng)可以表示位某個(gè)整數(shù)的不同次冪,求證:數(shù)列中存在無(wú)窮多項(xiàng)構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxx+1.

1)求曲線y=fx)在點(diǎn)(1f1))處的切線方程:

2)若非零實(shí)數(shù)a使得fxaxax2對(duì)x∈[1,+)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),智能手機(jī)的更新?lián)Q代極其頻繁和快速,而青少年對(duì)新事物的追求更是強(qiáng)烈,為了調(diào)查大學(xué)生更換手機(jī)的時(shí)間,現(xiàn)對(duì)某大學(xué)中的大學(xué)生使用一部手機(jī)的年限進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的大學(xué)生中抽取了男生、女生各人進(jìn)行抽樣分析,制成如下的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估計(jì)男大學(xué)生使用手機(jī)年限的中位數(shù)和女大學(xué)生使用手機(jī)年限的眾數(shù);

2)根據(jù)頻率分布直方圖,求出男大學(xué)生和女大學(xué)生使用手機(jī)年限的平均值,并分析比較男大學(xué)生和女大學(xué)生哪個(gè)群體更換手機(jī)的頻率更高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我邊防局接到情報(bào),在海礁所在直線的一側(cè)點(diǎn)處有走私團(tuán)伙在進(jìn)行交易活動(dòng),邊防局迅速派出快艇前去搜捕:如圖,已知快艇出發(fā)位置在的另一側(cè)碼頭處,公里,公里,

1)是否存在點(diǎn),使快艇沿航線的路程相等;如存在,則建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出點(diǎn)的軌跡方程,且畫(huà)出軌跡的大致圖形;如不存在,請(qǐng)說(shuō)明理由;

2)問(wèn)走私船在怎樣的區(qū)域上時(shí),路線比路線的路程短,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案