將一顆質(zhì)地均勻的正四面體骰子(四個面的點數(shù)分別為1,2,3,4)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為.
(1)記事件為“”,求;
(2)記事件為“”,求.
(1);(2).
解析試題分析:(1)先用窮舉法得到先后拋擲兩次,出現(xiàn)點數(shù)的基本事件總數(shù),從中找出滿足的事件數(shù),根據(jù)古典概型的概率計算公式即可得到所求的概率;(2)在事件發(fā)生的前提下,找出事件包含的事件數(shù),進(jìn)而可得條件概率.
(1)投擲骰子2次得到的所有結(jié)果為:,,,,,,,,,,,,,,,共16種 2分
事件包含的結(jié)果有:,,,,,共6種 4分
則 6分
(2)在事件發(fā)生的前提下,事件包含的結(jié)果有:, (共2種) 10分
則 13分.
考點:1.古典概率;2.條件概率.
科目:高中數(shù)學(xué) 來源: 題型:解答題
有甲、乙兩個班進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
| 優(yōu)秀 | 非優(yōu)秀 | 總計 |
甲班 | 20 | | |
乙班 | | 60 | |
總計 | | | 210 |
參考數(shù)據(jù) | 當(dāng)≤2.706時,無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián); |
當(dāng)>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián). |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.
(1)若用數(shù)組(x,y,z)中的x,y,z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個學(xué)院.現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分)隨機將這2n個連續(xù)正整數(shù)分成A,B兩組,每組n個數(shù),A組最小數(shù)為,最大數(shù)為;B組最小數(shù)為,最大數(shù)為,記
(1)當(dāng)時,求的分布列和數(shù)學(xué)期望;
(2)令C表示事件與的取值恰好相等,求事件C發(fā)生的概率;
(3)對(2)中的事件C,表示C的對立事件,判斷和的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)每個工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別為各人是否需使用設(shè)備相互獨立.
(1)求同一工作日至少3人需使用設(shè)備的概率;
(2)X表示同一工作日需使用設(shè)備的人數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•重慶)某市公租房的房源位于A、B、C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的4位申請人中:
(I)沒有人申請A片區(qū)房源的概率;
(II)每個片區(qū)的房源都有人申請的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
高二年級的一個研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個小組進(jìn)行驗證性實驗.
(1)第1組做了5次這種植物種子的發(fā)芽實驗(每次均種下一粒種子),求他們的實驗至少有3次成功的概率;
(2)第二小組做了若干次發(fā)芽試驗(每次均種下一粒種子),如果在一次實驗中種子發(fā)芽成功就停止實驗,否則將繼續(xù)進(jìn)行下次實驗,直到種子發(fā)芽成功為止,但發(fā)芽實驗的次數(shù)最多不超過5次,求第二小組所做種子發(fā)芽實驗的次數(shù)的概率分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和個黑球(為正整數(shù)).現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球,若取出的4個球均為黑球的概率為,求
(1)的值;
(2)取出的4個球中黑球個數(shù)大于紅球個數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com