【題目】已知函數(shù)f(x)=2sinx+1. (Ⅰ)設(shè)ω為大于0的常數(shù),若f(ωx)在區(qū)間 上單調(diào)遞增,求實(shí)數(shù)ω的取值范圍;
(Ⅱ)設(shè)集合 ,B={x||f(x)﹣m|<2},若A∪B=B,求實(shí)數(shù)m的取值范圍.

【答案】解:(Ⅰ)由題意,f(ωx)=2sinωx+1,由ωx∈[﹣ ],ω>0,可得x∈[﹣ , ], ∵f(ωx)在區(qū)間 上單調(diào)遞增,

∴0<ω≤ ;
(Ⅱ)∵A∪B=B,
∴AB,
∵|f(x)﹣m|<2,
∴m﹣2<f(x)<m+2,

,
∴2≤f(x)≤3,
,
∴1<m<4
【解析】(Ⅰ)由題意,f(ωx)=2sinωx+1,由ωx∈[﹣ , ],ω>0,可得x∈[﹣ , ],利用f(ωx)在區(qū)間 上單調(diào)遞增,可得不等式組,解不等式組,即可求實(shí)數(shù)ω的取值范圍;(Ⅱ)求出函數(shù)的值域,根據(jù)A∪B=B,可得AB,從而可得不等式組,解不等式,即可求出實(shí)數(shù)m的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由上半橢圓 , )和部分拋物線 )連接而成, 的公共點(diǎn)為 ,其中的離心率為

(1)求, 的值;

(2)過點(diǎn)的直線, 分別交于點(diǎn), (均異于點(diǎn) ),是否存在直線,使得以為直徑的圓恰好過點(diǎn),若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=lg ,g(x)=ex+ ,則
A.f(x)與g(x)都是奇函數(shù)
B.f(x)是奇函數(shù),g(x)是偶函數(shù)
C.f(x)與g(x)都是偶函數(shù)
D.f(x)是偶函數(shù),g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是直線與函數(shù)圖像的兩個(gè)相鄰的交點(diǎn),且.

(1)求的值和函數(shù)的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域?yàn)锳,函數(shù)y=log2(a﹣x)的定義域?yàn)锽.
(1)若AB,求實(shí)數(shù)a的取值范圍;
(2)設(shè)全集為R,若非空集合(RB)∩A的元素中有且只有一個(gè)是整數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若在點(diǎn)處的切線斜率為,求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:在時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga (a>0,a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)當(dāng)x∈(n,a﹣2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值;
(3)設(shè)函數(shù)g(x)=﹣ax2+8(x﹣1)afx﹣5,a≥8時(shí),存在最大實(shí)數(shù)t,使得x∈(1,t]時(shí)﹣5≤g(x)≤5恒成立,請(qǐng)寫出t與a的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

(1)試寫出直線的直角坐標(biāo)方程和曲線的普通方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案