如圖,經(jīng)過AB的平面ABEF與平面ABCD成45°角,經(jīng)過BE的平面BENM與平面ABEF成30°角,則平面BENM與平面ABCD所成二面角的余弦值為( 。
A、
2
4
B、
6
4
C、
3
4
D、
1
2
考點:二面角的平面角及求法
專題:計算題,空間位置關(guān)系與距離
分析:根據(jù)經(jīng)過AB的平面ABEF與平面ABCD成45°角,經(jīng)過BE的平面BENM與平面ABEF成30°角,利用面積射影定理,可求平面BENM與平面ABCD所成二面角的余弦值.
解答: 解:設(shè)ABCD的面積為S,則
∵經(jīng)過AB的平面ABEF與平面ABCD成45°角,
∴ABEF的面積為
2
S,
∵經(jīng)過BE的平面BENM與平面ABEF成30°角,
∴BENM的面積為
2
S
cos30°
=
2
6
3
S,
∴平面BENM與平面ABCD所成二面角的余弦值為
S
2
6
S
3
=
6
4

故選:B.
點評:本題考查二面角的平面角及求法,正確運用面積射影定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5名學(xué)生與2名教師排成一排拍照,2名教師相鄰且不排在兩端,共有不同的排法種數(shù)為( 。
A、1440B、960
C、720D、480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)的圖象上任一點(x0,y0)處的切線方程為y-y0=(x0-1)(1-lnx0)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是( 。
A、(1,e)
B、(-∞,1)∪(e,+∞)
C、(0,1)∪(e,+∞)
D、(0,1)和(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二年級計劃從3名男生和4名女生中選3人參加某項會議,則選出的3人中既有男生又有女生的選法種數(shù)為(  )
A、24B、30C、60D、90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,2]內(nèi)隨機取一個數(shù)a,則使得函數(shù)f(x)=
1
3
x3-
1
2
ax2-2a2x+
10
3
有三個零點的概率為(  )
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
5
i-2
的共軛復(fù)數(shù)對應(yīng)的點在復(fù)平面的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)i(i+1)的虛部為(  )
A、-1B、1
C、iD、i2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的第1項a1=1,且an+1=
an
1+an
(n=1,2,3,…)
(Ⅰ)求a2,a3,a4的值,猜想數(shù)列{an}的通項公式;
(Ⅱ)請證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立.根據(jù)該廠現(xiàn)有技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75,
(1)求第一次燒制后恰有一件產(chǎn)品合格的概率;
(2)經(jīng)過前后兩次燒制后,合格工藝品的個數(shù)為X,求隨機變量X的分布列,均值和方差.

查看答案和解析>>

同步練習(xí)冊答案