曲線y=x3+3x2+6x-10的切線中,斜率最小的切線方程是 .
【答案】分析:先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后求出導(dǎo)函數(shù)的最小值,其最小值即為斜率最小的切線方程的斜率,進(jìn)而可求得切點(diǎn)的坐標(biāo),最后根據(jù)點(diǎn)斜式可得到切線方程.
解答:解:∵f(x)=x3+3x2+6x-10∴f'(x)=3x2+6x+6=3(x+1)2+3
∵當(dāng)x=-1時(shí),f'(x)取到最小值3
∴f(x)=x3+3x2+6x-10的切線中,斜率最小的切線方程的斜率為3
∵f(-1)=-1+3-6-10=-14
∴切點(diǎn)坐標(biāo)為(-1,-14)
∴切線方程為:y+14=3(x+1),即3x-y-11=0
故答案為:3x-y-11=0.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義和導(dǎo)數(shù)的運(yùn)算.導(dǎo)數(shù)的幾何意義是函數(shù)在某點(diǎn)的導(dǎo)數(shù)值等于過該點(diǎn)的切線的斜率的值.