【題目】在創(chuàng)建全國(guó)文明衛(wèi)生城市過(guò)程中,某市創(chuàng)城辦為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問(wèn)卷調(diào)查(一位市民只能參加一次).通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的人的得分(滿分100)統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

1)由頻數(shù)分布表可以大致認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求

2)在(1)的條件下,創(chuàng)城辦為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

①得分不低于的可以獲贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);

②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

贈(zèng)送話費(fèi)的金額(單位:)

概率

現(xiàn)有市民甲參加此次問(wèn)卷調(diào)查,記 (單位:)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與均值.

:參考數(shù)據(jù)與公式

,則=0.9544

【答案】1;(2)分布列見解析;

【解析】

1)由題意求出,從而,進(jìn)而,.由此能求出

2)由題意知,獲贈(zèng)話費(fèi)的可能取值為20,4060,80.分別求出相應(yīng)的概率,由此能求出的分布列和

解:(1)由題意得

,,

,

綜上

2)由題意知

獲贈(zèng)話費(fèi)的可能取值為20,40,60,80

;

;

;

的分布列為:

20

40

60

80

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,最小值為4的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論

ACBD;

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M在橢圓10b)上,且位于第一象限,F1,F2為橢圓的兩個(gè)焦點(diǎn),過(guò)F1,F2M的圓與y軸交于點(diǎn)P,QPQ的上方),|OP||OQ|1

(Ⅰ)求b的值;

(Ⅱ)直線PM與直線x2交于點(diǎn)N,試問(wèn),在x軸上是否存在定點(diǎn)T,使得為定值?若存在,求出點(diǎn)T的坐標(biāo)與該定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,所在平面互相垂直,且,,分別為,的中點(diǎn).

(1)求證:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,直線l經(jīng)過(guò)點(diǎn)F,且與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)直線l繞點(diǎn)F轉(zhuǎn)動(dòng)時(shí),試問(wèn):在x軸上是否存在定點(diǎn)M,使得為常數(shù)?若存在,求出定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;

(Ⅱ) 當(dāng)時(shí),求函數(shù)上最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案