17.已知函數(shù)f(x)=log2x+2,則方程f(x)-f′(x)=2的根所在的區(qū)間為(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,2)D.(2,3)

分析 求導(dǎo)f′(x)=$\frac{1}{xln2}$,從而令h(x)=f(x)-f′(x)-2=log2x-$\frac{1}{xln2}$,從而利用方程與函數(shù)的關(guān)系解得.

解答 解:∵f(x)=log2x+2,∴f′(x)=$\frac{1}{xln2}$,
∴h(x)=f(x)-f′(x)-2=log2x-$\frac{1}{xln2}$,
∵h(yuǎn)(x)在其定義域(0,+∞)上連續(xù)單調(diào)遞增,
且h($\frac{1}{2}$)=log2$\frac{1}{2}$-$\frac{1}{\frac{1}{2}ln2}$-1-$\frac{2}{ln2}$<0,
h(1)=0-$\frac{1}{ln2}$<0,
h(2)=log22-$\frac{1}{2ln2}$=1-$\frac{1}{2ln2}$>0,
故h(1)h(2)<0;
故選:C.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用及方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.用二分法求方程2x+x-8=0的一個(gè)實(shí)數(shù)解(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.Sn為數(shù)列{an}的前n項(xiàng)和,已知an>2,且an2+4n=4Sn+1.
(1)求證:{an}為等差數(shù)列;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x∈Z|0<x≤3},則集合A的非空子集個(gè)數(shù)為( 。﹤(gè).
A.15B.16C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.cos$\frac{17π}{6}$=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列四組函數(shù)中,相等的兩個(gè)函數(shù)是( 。
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2lgx,g(x)=lgx2C.f(x)=($\sqrt{x}$)2,g(x)=xD.f(x)=x,g(t)=t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=lg(x2-x-6)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-2)B.(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若函數(shù)f(x)為定義域D上的單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D,使得當(dāng)x∈[a,b]時(shí),函數(shù)f(x)的值域恰好為[a,b],則稱函數(shù)f(x)為D上的“正函數(shù)”,區(qū)間[a,b]為函數(shù)f(x)的“正區(qū)間”.
(1)試判斷函數(shù)f(x)=$\frac{3}{4}$x2-3x+4是否為“正函數(shù)”?若是“正函數(shù)”,求函數(shù)f(x)的“正區(qū)間”;若不是“正函數(shù)”,請(qǐng)說(shuō)明理由;
(2)設(shè)命題p:f(x)=$\sqrt{x-\frac{8}{9}}$+m是“正函數(shù)”;命題q:g(x)=x2-m(x<0)是“正函數(shù)”.若p∧q是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若非零函數(shù)f(x)對(duì)任意實(shí)數(shù)a,b均有f(a+b)=f(a)•f(b),且當(dāng)x<0時(shí),f(x)>1.
(1)求證:f(x)>0;      
(2)求證:f(x)為減函數(shù);
(3)當(dāng)f(2)=$\frac{1}{4}$時(shí),解不等式f(x-3)•f(5)≤$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案