在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:
;②;③
(1)求的頂點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍
(1)頂點(diǎn)的軌跡方程為 .
(2)
(1)設(shè)
 , 點(diǎn)在線段的中垂線上
由已知;又,
 


  
 ,頂點(diǎn)的軌跡方程為 .
(2)設(shè)直線方程為:,
  消去得: ①
 ,      


由方程①知
,, .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。
已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F,一條漸近線m:,設(shè)過(guò)點(diǎn)A的直線l的方向向量。
(1)求雙曲線C的方程;
(2)若過(guò)原點(diǎn)的直線,且al的距離為,求K的值;
(3)證明:當(dāng)時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)滿足的最大值為(     )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到直線的距離比它到點(diǎn)F的距離大.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)若點(diǎn)P的軌跡上不存在兩點(diǎn)關(guān)于直線l對(duì)稱(chēng),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,O是線段AB的中點(diǎn),|AB|=2c,以點(diǎn)A為圓心,2a為半徑作一圓,其中

(1)若圓A外的動(dòng)點(diǎn)P到B的距離等于它到圓周的最短距離,建立適當(dāng)坐標(biāo)系,求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明軌跡是何種曲線;
(2)經(jīng)過(guò)點(diǎn)O的直線l與直線AB成60°角,當(dāng)c=2,a=1時(shí),動(dòng)點(diǎn)P的軌跡記為E,設(shè)過(guò)點(diǎn)B的直線m交曲線E于M、N兩點(diǎn),且點(diǎn)M在直線AB的上方,求點(diǎn)M到直線l的距離d的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若圓x2+y2=9上每個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來(lái)的,則所得曲線的方程是(    )
A.+="1" B.+=1
C.+y2="1"D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題








查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線的兩條漸近線的夾角為,則該雙曲線的離心率為(    )
A.2B.C.2或D.2或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

寫(xiě)出雙曲線的焦點(diǎn)間的距離,焦點(diǎn)與頂點(diǎn)間的距離,焦點(diǎn)與準(zhǔn)線間的距離,準(zhǔn)線與準(zhǔn)線間的距離,頂點(diǎn)到準(zhǔn)線的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案