已知拋物線C1:y2=4px(p>0),焦點(diǎn)為F2,其準(zhǔn)線與x軸交于點(diǎn)F1;橢圓C2:分別以F1、F2為左、右焦點(diǎn),其離心率;且拋物線C1和橢圓C2的一個(gè)交點(diǎn)記為M.
(1)當(dāng)p=1時(shí),求橢圓C2的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線l經(jīng)過橢圓C2的右焦點(diǎn)F2,且與拋物線C1相交于A,B兩點(diǎn),若弦長(zhǎng)|AB|等于△MF1F2的周長(zhǎng),求直線l的方程.
【答案】分析:(1)m=1時(shí),求出焦點(diǎn)坐標(biāo)以及a,b 的值,寫出橢圓方程.
(2)由于△PF1F2周長(zhǎng)為 2a+2c=6,故弦長(zhǎng)|A1A2|=6,用點(diǎn)斜式設(shè)出直線L的方程,代入拋物線方程化簡(jiǎn),得到根與系數(shù)的關(guān)系,代入弦長(zhǎng)公式求出斜率 k的值.
解答:解:(1)當(dāng)p=1時(shí),F(xiàn)2(1,0),F(xiàn)1(-1,0)
設(shè)橢圓C2的標(biāo)準(zhǔn)方程為(a>b>0),∴c=1,=
∵c2=a2-b2,∴a=2,b=
故橢圓C2的標(biāo)準(zhǔn)方程為=1..(4分)
(2)(ⅰ)若直線l的斜率不存在,則l:x=1,且A(1,2),B(1,-2),∴|AB|=4
又∵△MF1F2的周長(zhǎng)等于|MF1|+|MF2|+|F1F2|=2a+2c=6≠|(zhì)AB|
∴直線l的斜率必存在.(6分)
(ⅱ)設(shè)直線l的斜率為k,則l:y=k(x-1)
,得k2x2-(2k2+4)x+k2=0
∵直線l與拋物線C1有兩個(gè)交點(diǎn)A,B
∴△=[-(2k2+4)]2-4k4=16k2+16>0,且k≠0
設(shè)則可得,x1x2=1
于是|AB|==
=
==
∵△MF1F2的周長(zhǎng)等于|MF1|+|MF2|+|F1F2|=2a+2c=6
∴由=6,解得k=
故所求直線l的方程為.(12分)
點(diǎn)評(píng):本題考查拋物線和橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì),弦長(zhǎng)公式的應(yīng)用,設(shè)出直線l的斜率為k,表示出△PF1F2的邊長(zhǎng)是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,其準(zhǔn)線與x軸交于點(diǎn)F1,以F1,F(xiàn)2為焦點(diǎn),離心率為
12
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓的標(biāo)準(zhǔn)方程及其右準(zhǔn)線的方程;
(2)用m表示P點(diǎn)的坐標(biāo);
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=x+7,圓C2:x2+y2=5.
(1)求證拋物線與圓沒有公共點(diǎn);
(2)過點(diǎn)P(a,0)作與x軸不垂直的直線l交C1,C2依次為A、B、C、D,若|AB|=|CD|,求實(shí)數(shù)a的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)已知拋物線C1:y2=2px和圓C2(x-
p
2
)
2
+y2=
p2
4
,其中p>0,直線l經(jīng)過C1的焦點(diǎn),依次交C1,C2于A,B,C,D四點(diǎn),則
AB
CD
的值為
p2
4
p2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=2px(p>0)的焦點(diǎn)F以及橢圓C2
y2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓O:x2+y2=1上.
(Ⅰ)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F的直線交拋物線C1于A、B兩不同點(diǎn),交y軸于點(diǎn)N,已知
NA
=λ1
AF
, 
NB
 =λ2
BF
,求證:λ12為定值.
(Ⅲ)直線l交橢圓C2于P、Q兩不同點(diǎn),P、Q在x軸的射影分別為P'、Q',
OP
OQ
+
OP′
OQ′
 +1=0
,若點(diǎn)S滿足:
OS
OP
 +
OQ
,證明:點(diǎn)S在橢圓C2上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C1:y2=4x,圓C2:(x-1)2+y2=1,過拋物線焦點(diǎn)F的直線l交C1于A,D兩點(diǎn)(點(diǎn)A在x軸上方),直線l交C2于B,C兩點(diǎn)(點(diǎn)B在x軸上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)設(shè)直線OA、OB、OC、OD的斜率分別為m、n、p、q,且滿足m+n+p+q=3
2
,并且|AB|,|BC|,|CD|成等差數(shù)列,求出所有滿足條件的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案