【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調(diào),則ω的最大值為( )
A.11
B.9
C.7
D.5
【答案】B
【解析】解:∵x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對稱軸, ∴ ,即 ,(n∈N)
即ω=2n+1,(n∈N)
即ω為正奇數(shù),
∵f(x)在( , )上單調(diào),則 ﹣ = ≤ ,
即T= ≥ ,解得:ω≤12,
當(dāng)ω=11時,﹣ +φ=kπ,k∈Z,
∵|φ|≤ ,
∴φ=﹣ ,
此時f(x)在( , )不單調(diào),不滿足題意;
當(dāng)ω=9時,﹣ +φ=kπ,k∈Z,
∵|φ|≤ ,
∴φ= ,
此時f(x)在( , )單調(diào),滿足題意;
故ω的最大值為9,
故選:B
根據(jù)已知可得ω為正奇數(shù),且ω≤12,結(jié)合x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對稱軸,求出滿足條件的解析式,并結(jié)合f(x)在( , )上單調(diào),可得ω的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0),過其焦點(diǎn)F的直線l交拋物線C于點(diǎn)A、B,|AF|=3|BF|,則|AB|=( )
A.p
B.
C.2p
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足an=2 ﹣1.若對任意的正整數(shù)p、q(p≠q),不等式SP+Sq>kSp+q恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1=λan+2n(n∈N* , λ∈R),且a1=2.
(1)若λ=1,求數(shù)列{an}的通項(xiàng)公式;
(2)若λ=2,證明數(shù)列{ }是等差數(shù)列,并求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當(dāng)a=1時,解不等式f(x)>1;
(2)若關(guān)于x的方程f(x)+log2(x2)=0的解集中恰有一個元素,求a的值;
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,且滿足 = , =3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若b+c=6,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=ksin(kx+φ)(k>0,|φ|< )與函數(shù)y=kx﹣k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對稱軸的方程可以為( )
A.x=﹣
B.x=
C.x=
D.x=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:以點(diǎn) 為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn),
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=﹣2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com