【題目】在△ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a、b、c,且滿足 = =3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若b+c=6,求a的值.

【答案】解:(Ⅰ)因?yàn)? ,∴ ,
又由 =3,
得bccosA=3,∴bc=5,

(Ⅱ)對(duì)于bc=5,又b+c=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得a2=b2+c2﹣2bccosA=20,∴
【解析】(Ⅰ)利用二倍角公式利用 = 求得cosA,進(jìn)而求得sinA,進(jìn)而根據(jù) =3求得bc的值,進(jìn)而根據(jù)三角形面積公式求得答案.(Ⅱ)根據(jù)bc和b+c的值求得b和c,進(jìn)而根據(jù)余弦定理求得a的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二倍角的余弦公式(二倍角的余弦公式:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:方程 =1表示焦點(diǎn)在x軸上的橢圓,q:雙曲線 =1的離心率e∈( , ).
(1)若橢圓 =1的焦點(diǎn)和雙曲線 =1的頂點(diǎn)重合,求實(shí)數(shù)m的值;
(2)若“p∧q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點(diǎn),過(guò)點(diǎn)C(2,0)且與AB垂直的直線與圓O的另一交點(diǎn)為D.
(1)當(dāng)點(diǎn)B坐標(biāo)為(0,﹣2)時(shí),求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( )上單調(diào),則ω的最大值為(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的通項(xiàng)公式an=ncos ,其前n項(xiàng)和為Sn , 則S2015=(
A.1008
B.2015
C.﹣1008
D.﹣504

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列結(jié)論中: ①函數(shù)y=sin(kπ﹣x)(k∈Z)為奇函數(shù);
②函數(shù) 的圖象關(guān)于點(diǎn) 對(duì)稱;
③函數(shù) 的圖象的一條對(duì)稱軸為 π;
④若tan(π﹣x)=2,則cos2x=
其中正確結(jié)論的序號(hào)為(把所有正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若曲線C1:x2+y2﹣2x=0與曲線C2:mx2﹣xy+mx=0有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣ ,
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F是雙曲線 =1(a>0,b>0)的左焦點(diǎn),E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案