【題目】已知:以點(diǎn) 為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn),
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=﹣2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.

【答案】
(1)解:∵圓C過原點(diǎn)O,

,

設(shè)圓C的方程是 ,

令x=0,得 ,

令y=0,得x1=0,x2=2t

,

即:△OAB的面積為定值;


(2)解:∵OM=ON,CM=CN,

∴OC垂直平分線段MN,

∵kMN=﹣2,∴ ,

∴直線OC的方程是

,解得:t=2或t=﹣2,

當(dāng)t=2時,圓心C的坐標(biāo)為(2,1), ,

此時C到直線y=﹣2x+4的距離 ,

圓C與直線y=﹣2x+4相交于兩點(diǎn),

當(dāng)t=﹣2時,圓心C的坐標(biāo)為(﹣2,﹣1), ,

此時C到直線y=﹣2x+4的距離 ,

圓C與直線y=﹣2x+4不相交,

∴t=﹣2不符合題意舍去,

∴圓C的方程為(x﹣2)2+(y﹣1)2=5.


【解析】(1)求出半徑,寫出圓的方程,再解出A、B的坐標(biāo),表示出面積即可.(2)通過題意解出OC的方程,解出t 的值,直線y=﹣2x+4與圓C交于點(diǎn)M,N,判斷t是否符合要求,可得圓的方程.
【考點(diǎn)精析】關(guān)于本題考查的截距式方程和圓的標(biāo)準(zhǔn)方程,需要了解直線的截距式方程:已知直線軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中;圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調(diào),則ω的最大值為(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線C1:x2+y2﹣2x=0與曲線C2:mx2﹣xy+mx=0有三個不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣ ,
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 + = ,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠36名工人年齡數(shù)據(jù)如圖:

工人編號

年齡

工人編號

年齡

工人編號

年齡

工人編號

年齡

1
2
3
4
5
6
7
8
9

40
44
40
41
33
40
45
42
43

10
11
12
13
14
15
16
17
18

36
31
38
39
43
45
39
38
36

19
20
21
22
23
24
25
26
27

27
43
41
37
34
42
37
44
42

28
29
30
31
32
33
34
35
36

34
39
43
38
42
53
37
49
39


(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機(jī)抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(2)計算(1)中樣本的均值 和方差s2
(3)36名工人中年齡在 ﹣s和 +s之間有多少人?所占百分比是多少(精確到0.01%)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)=
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=2 , ,若 sin(A+C)=2cosC,求b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F是雙曲線 =1(a>0,b>0)的左焦點(diǎn),E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) , 是其函數(shù)圖象的一條對稱軸. (Ⅰ)求ω的值;
(Ⅱ)若f(x)的定義域為 ,值域為[1,5],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高二年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級共有學(xué)生640人,試估計該校高二年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案