【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù),繪制成如下折線圖:
(1)根據(jù)圖中甲、乙兩個地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個統(tǒng)計(jì)結(jié)論;
(2)治療“新冠肺炎”藥品的研發(fā)成了當(dāng)務(wù)之急,某藥企計(jì)劃對甲地區(qū)的項(xiàng)目或乙地區(qū)的項(xiàng)目投入研發(fā)資金,經(jīng)過評估,對于項(xiàng)目,每投資十萬元,一年后利潤是l.38萬元、1.18萬元、l.14萬元的概率分別為、、;對于項(xiàng)目,利潤與產(chǎn)品價格的調(diào)整有關(guān),已知項(xiàng)目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,每次價格調(diào)整中,產(chǎn)品價格下調(diào)的概率都是,記項(xiàng)目一年內(nèi)產(chǎn)品價格的下調(diào)次數(shù)為,每投資十萬元,取0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.25萬元、0.6萬元.記對項(xiàng)目投資十萬元,一年后利潤的隨機(jī)變量為,記對項(xiàng)目投資十萬元,一年后利潤的隨機(jī)變量為.
(i)求,的概率分布列和數(shù)學(xué)期望,;
(ii)如果你是投資決策者,將做出怎樣的決策?請寫出決策理由.
【答案】(1)①甲地區(qū)比乙地區(qū)的新增人數(shù)的平均數(shù)低; ②甲地區(qū)比乙地區(qū)的方差大;
(2)(i)分布列見解析,=1.2,; (ii) 當(dāng)時,投資項(xiàng)目;當(dāng)時,兩個項(xiàng)目都可以;當(dāng)時,投資項(xiàng)目.理由見解析
【解析】
(1)由圖表可知甲地區(qū)的數(shù)據(jù)比較分散,所以甲地區(qū)比乙地區(qū)的方差大;也可求出兩地區(qū)的平均數(shù),比較平增多數(shù);
(2)(i)由題可知分別取l.38、1.18、l.14時,其對應(yīng)的概率分別為、、,從而可列出的分布列,由題意得,從而可列出的分布列,而取0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.25萬元、0.6萬元,由此可列出的分布列,并可求出期望;
(ii)對(i)得到的數(shù)學(xué)期望,比較大小,進(jìn)行決策.
(1)①甲地區(qū)比乙地區(qū)的新增人數(shù)的平均數(shù)低;
②甲地區(qū)比乙地區(qū)的方差大;
(2)(i)由題意得的概率分布列為
1.38 | 1.18 | 1.14 | |
所以.
由題意得,即的概率分布列為
0 | 1 | 2 | |
由題意得下調(diào)次數(shù)和利潤的關(guān)系為
0 | 1 | 2 | |
1.4 | 1.25 | 0.6 |
所以的概率分布列為
1.4 | 1.25 | 0.6 | |
所以
(ii)當(dāng),得,即,
整理得,解得;
當(dāng)時,;
當(dāng)時,;
所以,當(dāng)時,投資項(xiàng)目;當(dāng)時,兩個項(xiàng)目都可以;當(dāng)時,投資項(xiàng)目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).
(1)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(2)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過1.5萬元的概率;
(3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
超過2萬元 | 不超過2萬元 | 總計(jì) | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計(jì) |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線上的一點(diǎn),,為拋物線上異于點(diǎn)的兩點(diǎn),且直線的斜率與直線的斜率互為相反數(shù).
(1)求直線的斜率;
(2)設(shè)直線過點(diǎn)并交拋物線于,兩點(diǎn),且,直線與軸交于點(diǎn),試探究與的夾角是否為定值,若是則求出定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個,在水平桌面上無滑動滾動一周,它們的中心的運(yùn)動軌跡長分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,AD⊥CD,AB∥CD,AB=3,AD=4,AE=5,.
(1)證明:DF∥平面BCE.
(2)求A到平面BEDF的距離,并求四棱錐A﹣BEDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個分類變量X和Y,由他們的觀測數(shù)據(jù)計(jì)算得到K2的觀測值范圍是3.841<k<6.635,據(jù)K2的臨界值表,則以下判斷正確的是( )
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.在犯錯誤概率不超過0.05的前提下,認(rèn)為變量X與Y有關(guān)系
B.在犯錯誤概率不超過0.05的前提下,認(rèn)為變量X與Y沒有關(guān)系
C.在犯錯誤概率不超過0.01的前提下,認(rèn)為變量X與Y有關(guān)系
D.在犯錯誤概率不超過0.01的前提下,認(rèn)為變量X與Y沒有關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.
(1)求證:平面;
(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,左、右焦點(diǎn)分別為,,過的直線與C交于M,N兩點(diǎn),的周長為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過M作與y軸垂直的直線l,點(diǎn),試問直線與直線l交點(diǎn)的橫坐標(biāo)是否為定值?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com