已知直線l:(a+3)x+y-1=0,直線m:5x-5y+11=0,若直線l∥m,則直線l與直線m之間的距離是( 。
A、
6
5
B、
26
26
C、
3
2
5
D、
3
26
26
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:由兩直線平行的條件列式求得a的值,代入直線l后化簡,然后由兩平行線間的距離公式得答案.
解答: 解:由l:(a+3)x+y-1=0,m:5x-5y+11=0,且l∥m,
-5(a+3)-5=0
11(a+3)+5≠0
,解得:a=-4.
∴直線l:(a+3)x+y-1=0化為:x-y+1=0.
又直線m:5x-5y+11=0,即x-y+
11
5
=0

∴直線l與直線m之間的距離是d=
|1-
11
5
|
2
=
3
2
5

故選:C.
點(diǎn)評:本題考查了直線的一般式方程與直線平行的關(guān)系,考查了兩平行線間的距離公式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,且過點(diǎn)P(-4,-2)的拋物線的標(biāo)準(zhǔn)方程是( 。
A、y2=-x
B、x2=-8y
C、y2=-8x或x2=-y
D、y2=-x或x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-x2+ax+3
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的值域;
(2)若A={x|y=lg(5-x)},函數(shù)f(x)=2-x2+ax+3在A內(nèi)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)則下列結(jié)論正確的是( 。
A、f(x)圖象關(guān)于直線x=
π
3
對稱
B、f(x)圖象關(guān)于(
π
4
,0)對稱
C、f(x)圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)圖象
D、f(x)在(0,
π
6
)上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若8名學(xué)生和2位老師站成一排合影,則2位老師不相鄰的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)在[0,+∞)上遞減,且f(
1
2
)=0,則滿足f(x+1)<0的x的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序,當(dāng)輸入變量x的值為5時(shí),電腦屏幕上將顯示(  )
A、5B、-5
C、x=5D、x=-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中a3=9,a9=3,則其通項(xiàng)公式為( 。
A、an=12+n
B、an=n-12
C、an=12-n
D、an=9-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

采用分成抽樣的方法從高一年級和高二年級的學(xué)生中抽取一個(gè)樣本,已知從高一年級的750人中抽取了25人,如果該樣本的容量是55,那么,高二年級的學(xué)生數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案