如圖程序,當輸入變量x的值為5時,電腦屏幕上將顯示( 。
A、5B、-5
C、x=5D、x=-5
考點:選擇結構
專題:算法和程序框圖
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算分段函數(shù)y=
x,x≥0
-x,x<0
的函數(shù)值.然后將自變量x值代入函數(shù)的解析式,不難得到函數(shù)值.
解答: 解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是計算分段函數(shù)y=
x,x≥0
-x,x<0
的函數(shù)值
∵x=5,
∴輸出的值為5,
故選:A
點評:根據(jù)流程圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型⇒③解模.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x).
(1)當f(1)=3時,求f(2015)的值;
(2)求證:函數(shù)f(x)的圖象關于直線x=2對稱;
(3)若f(x)滿足在區(qū)間[0,2]上是增函數(shù)的條件,且f(2)=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校有150名學生參加了中學生環(huán)保知識競賽,為了解成績情況,現(xiàn)從中隨機抽取50名學生的成績進行統(tǒng)計(所有學生成績均不低于60分).請你根據(jù)尚未完成的頻率分布表,解答下列問題:

分組頻數(shù)頻率
第1組[60,70)M0.26
第2組[70,80)15p
第3組[80,90)200.40
第4組[90,100]Nq
合計501
(Ⅰ)寫出M、N、p、q(直接寫出結果即可),并作出頻率分布直方圖;
(Ⅱ)若成績在90分以上的學生獲得一等獎,試估計全校所有參賽學生獲一等獎的人數(shù);
(Ⅲ)現(xiàn)從所有一等獎的學生中隨機選擇2名學生接受采訪,已知一等獎獲得者中只有2名女生,求恰有1名女生接受采訪的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:(a+3)x+y-1=0,直線m:5x-5y+11=0,若直線l∥m,則直線l與直線m之間的距離是( 。
A、
6
5
B、
26
26
C、
3
2
5
D、
3
26
26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0,函數(shù)y=
4
x
+x的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n為常數(shù),函數(shù)f(x)=
n-2x
1+n•2x
為奇函數(shù).
(1)求n的值;
(2)當m>0且x∈[0,1]時,函數(shù)g(x)=(4x+(m+1)•2x+m)•f(x),其中m為常數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x≥1
x+y≤3
y≥a(x-3)
其中a>0,若z=2x+y的最小值為
1
2
,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cos(2x-
π
6
)的一條對稱軸方程為( 。
A、x=
π
4
B、x=
12
C、x=
π
3
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=20.3,b=2.10.35,c=log21.2,則a,b,c的大小關系為( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

同步練習冊答案