已知橢圓C1
x2
4
+
y2
3
=1
,其左準線為l1,右準線為l2,一條以原點為頂點,l1為準線的拋物線C2交l2于A,B兩點,則|AB|等于(  )
A、2B、4C、8D、16
分析:先根據(jù)條件求出兩準線方程以及拋物線方程;再聯(lián)立拋物線C2與l2的方程求出A,B兩點縱坐標即可求出結(jié)論.
解答:解:由題得:橢圓的左準線l1的方程為:x=-
a2
c
=-4,右準線為l2,x=4.
∴-
p
2
=-4.
∴p=8,
∴拋物線方程為:y2=16x.
聯(lián)立
y2=16x
x=4
⇒y1=8,y2=-8.
∴|AB|=|y1-y2|=16.
故選:D.
點評:本題主要考查橢圓的簡單性質(zhì)以及拋物線的簡單性質(zhì),考查計算能力,屬于基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
4
+
y2
3
=1
和拋物線C2:y2=2px(p>0),過點M(1,0)且傾斜角為
π
3
的直線與拋物線交于A、B,與橢圓交于C、D,當|AB|:|CD|=5:3時,求p的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x24
+y2=1
,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標原點,過O的直線l與C1相交于A,B兩點,且l與C2相交于C,D兩點.若|CD|=2|AB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
4
+y2=1
,橢圓C2以橢圓C1的長軸為短軸,且與C1有相同的離心率,則橢圓C2的標準方程為
y2
16
+
x2
4
=1
y2
16
+
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

同步練習冊答案