【題目】為了提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)原信息為,傳輸信息為,其中, , 運(yùn)算規(guī)則為: , , , .例如:原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息出錯(cuò)的是( )
A. 01100 B. 11010 C. 10110 D. 11000
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)在軸上,且短軸的兩個(gè)頂點(diǎn)與其中一個(gè)焦點(diǎn)的連線構(gòu)成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線交橢圓于兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是( )
A.平面分正方體所得兩部分的體積相等;
B.四邊形一定是平行四邊形;
C.平面與平面不可能垂直;
D.四邊形的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中)在點(diǎn)處的切線斜率為1.
(1)用表示;
(2)設(shè),若對(duì)定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(3)在(2)的前提下,如果,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門必選科目外,考生再?gòu)奈锢、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多
B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分
C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史
D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對(duì)稱軸為坐標(biāo)軸,頂點(diǎn)是坐標(biāo)原點(diǎn),準(zhǔn)線方程為,直線與拋物線相交于不同的, 兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)如果直線過拋物線的焦點(diǎn),求的值;
(3)如果,直線是否過一定點(diǎn),若過一定點(diǎn),求出該定點(diǎn);若不過一定點(diǎn),試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),且是上的增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng),且對(duì)任意實(shí)數(shù),關(guān)于的方程總有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過,直線與橢圓交于,兩點(diǎn)(,兩點(diǎn)不是左右頂點(diǎn)),若直線的斜率為時(shí),弦的中點(diǎn)在直線上.
(Ⅰ)求橢圓的方程.
(Ⅱ)若以,兩點(diǎn)為直徑的圓過橢圓的右頂點(diǎn),則直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com