分析 先將曲線進行化簡得到一個圓心是(0,1)的上半圓,直線y=k(x-2)+4表示過定點(2,4)的直線,利用直線與圓的位置關(guān)系可以求實數(shù)k的取值范圍.
解答 解:因為y=1+√4−x2,所以x2+(y-1)2=4,
此時表示為圓心M(0,1),半徑r=2的圓.
因為x∈[-2,2],y=1+√4−x2≥1,
所以表示為圓的上部分.
直線y=k(x-2)+4表示過定點P(2,4)的直線,
當直線與圓相切時,有圓心到直線kx-y+4-2k=0的距離d=|3−2k|√k2+1=2,解得k=512.
當直線經(jīng)過點B(-2,1)時,直線PB的斜率為k=34.
所以要使直線與曲線有兩個不同的公共點,則必有512<k≤34.
即實數(shù)k的取值范圍是512<k≤34.
故答案為512<k≤34.
點評 本題主要考查了直線與圓的位置關(guān)系的應(yīng)用以及直線的斜率和距離公式.利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.同時要注意曲線化簡之后是個半圓,而不是整圓,這點要注意,防止出錯.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com