分析 (1)由函數(shù)的對稱軸即可求出a的值,
(2)根據(jù)二次函數(shù)的單調(diào)性即可求出函數(shù)f(x)在區(qū)間[0,3]上的值域,
(3)根據(jù)圖象的平移法則即可求出答案.
解答 解:(1)∵f(4-x)=f(x),
∴f(x)對稱軸為x=2,即$\frac{a}{2}$=2,
∴a=4.
(2)∵f(x)=x2-4x+3在[0,2]上遞減,在[2,3]上遞增,
∴f(x)min=f(2)=-1,
又f(0)=3,f(3)=0,
∴f(x)max=f(0)=3,
∴函數(shù)f(x)的值域為[-1,3],
(3)將函數(shù)f(x)=x2-4x+3=(x-2)2-1的圖象整體向左平移2個單位長度,再向上平移1個單位長度
即可得到函數(shù)y=x2的圖象.
點評 本題考查二次函數(shù)的基本性質(zhì),主要是對稱軸和在閉區(qū)間上的單調(diào)性問題,屬于中檔題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用水量(噸) | 單價(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過20噸不超過35噸的部分按3元/噸收費 |
35以上 | 4 | 超過35噸的部分按4元/噸收費 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com