【題目】已知在平面直角坐標(biāo)系中,橢圓的方程為,以為極點(diǎn), 軸非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程和橢圓的參數(shù)方程;

(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.

【答案】(1)直線的直角坐標(biāo)方程為,橢圓的參數(shù)方程為為參數(shù));(2)9.

【解析】試題分析:(1)根據(jù)題意,由參數(shù)方程的定義可得橢圓的參數(shù)方程,對直線的極坐標(biāo)方程利用兩角和的正弦展開,將, 代入可得直線的普通方程;(2)根據(jù)題意,設(shè),進(jìn)而分析可得,由三角函數(shù)的性質(zhì)分析可得答案.

試題解析:(1)由,得,

代入,得直線的直角坐標(biāo)方程為.

橢圓的參數(shù)方程為為參數(shù)).

(2)因?yàn)辄c(diǎn)在橢圓上,所以設(shè)

,

當(dāng)且僅當(dāng)時,取等號,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】做一個無蓋的圓柱形水桶,若要使其體積是,且用料最省,則圓柱的底面半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十二”是繼“雙十一”之后的又一個網(wǎng)購狂歡節(jié),為了刺激“雙十二”的消費(fèi),某電子商務(wù)公司決定對“雙十一”的網(wǎng)購者發(fā)放電子優(yōu)惠券.為此,公司從“雙十一”的網(wǎng)購消費(fèi)者中用隨機(jī)抽樣的方法抽取了100人,將其購物金額(單位:萬元)按照, 分組,得到如下頻率分布直方圖

根據(jù)調(diào)查,該電子商務(wù)公司制定了發(fā)放電子優(yōu)惠券的辦法如下:

(Ⅰ)求購物者獲得電子優(yōu)惠券金額的平均數(shù);

(Ⅱ)從這100名購物金額不少于0.8萬元的人中任取2人,求這兩人的購物金額在0.80.9萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成,兩組.年年初,公司根據(jù)銷售員的銷售業(yè)績分發(fā)年終獎,銷售員的銷售額(單位:十萬元)在區(qū)間,,內(nèi)對應(yīng)的年終獎分別為2萬元,2.5萬元,3萬元,3.5萬元.已知銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組:,,,得到如下兩個頻率分布直方圖:

以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機(jī)選取1位,記,分別表示組與組被選取的銷售員獲得的年終獎.

(1)求的分布列及數(shù)學(xué)期望;

(2)試問組與組哪個組銷售員獲得的年終獎的平均值更高?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,某旅行社為吸引游客去某風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):若旅行團(tuán)人數(shù)不超過30,則每位游客需交費(fèi)用600元;若旅行團(tuán)人數(shù)超過30,則游客每多1人,每人交費(fèi)額減少10元,直到達(dá)到70人為止.

(1)寫出旅行團(tuán)每人需交費(fèi)用(單位:元)與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;

(2)旅行團(tuán)人數(shù)為多少時,旅行社可以從該旅行團(tuán)獲得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 , 其左右焦點(diǎn)為,過點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于兩點(diǎn),且、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)記的面積為 為原點(diǎn)的面積為,試問:是否存在直線使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的圖像在點(diǎn)處的切線方程;

(2)求在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對任意的實(shí)數(shù)都有:,且當(dāng)時,有

1)求;

2)求證:上為增函數(shù);

3)若,且關(guān)于的不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中, 平面,底面為菱形, 中點(diǎn), 的中點(diǎn), 上的點(diǎn).

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)中點(diǎn),且時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案