【題目】如圖,已知橢圓 其左右焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于兩點(diǎn),且、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)記的面積為, 為原點(diǎn)的面積為,試問(wèn):是否存在直線使得?說(shuō)明理由.

【答案】(1);(2).

【解析】試題分析:

1)由題意得,,所以,于是可得橢圓的方程.(2)假設(shè)存在直線滿足條件.將轉(zhuǎn)化為,可根據(jù)題意設(shè)出直線的方程,將直線方程代入橢圓方程消元后可得二次方程,結(jié)合根與系數(shù)的關(guān)系和兩點(diǎn)間的距離可得關(guān)于(直線斜率)的方程,解方程可得的值,由此判斷結(jié)論是否成立即可.

試題解析

(1)因?yàn)?/span>、、構(gòu)成等差數(shù)列,

所以,所以,

又因?yàn)?/span>,

所以,

所以橢圓的方程為

(2)假設(shè)存在直線,使得,顯然直線不能與, 軸垂直.

設(shè)方程為

消去y整理得,

顯然

設(shè) ,則

故點(diǎn)的橫坐標(biāo)為,

所以

設(shè),因?yàn)?/span>,所以,

解得,即

相似,且

,

,

整理得

解得,所以

所以存在直線滿足條件,且直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).

1)求證: 平面平面;

2)求證: 平面

3)求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在R上的奇函數(shù),,若單調(diào)遞減,則不等式的解集為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,且, 是棱的中點(diǎn),點(diǎn)在側(cè)棱上運(yùn)動(dòng).

(1)當(dāng)是棱的中點(diǎn)時(shí),求證: 平面;

(2)當(dāng)直線與平面所成的角的正切值為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓的方程為,以為極點(diǎn), 軸非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程和橢圓的參數(shù)方程;

(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,平面,是線段的中點(diǎn),.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,連接,當(dāng)直線的傾斜角發(fā)生變化時(shí),直線軸是否相交于定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n是兩條不同直線,,是三個(gè)不同平面,給出下列四個(gè)命題:①若m⊥,n,則m//n;②若////,m,則m⊥;③若m//,n//,則m//n;④,,則//.其中正確命題的序號(hào)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是同一球面上的四點(diǎn),是邊長(zhǎng)為6的等邊三角形,若三棱錐體積的最大值為,則該球的表面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案